Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1 Structured version   Unicode version

Theorem preqr1 3964
 Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1
preqr1.2
Assertion
Ref Expression
preqr1

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5
21prid1 3904 . . . 4
3 eleq2 2496 . . . 4
42, 3mpbii 203 . . 3
51elpr 3824 . . 3
64, 5sylib 189 . 2
7 preqr1.2 . . . . 5
87prid1 3904 . . . 4
9 eleq2 2496 . . . 4
108, 9mpbiri 225 . . 3
117elpr 3824 . . 3
1210, 11sylib 189 . 2
13 eqcom 2437 . 2
14 eqeq2 2444 . 2
156, 12, 13, 14oplem1 931 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 358   wceq 1652   wcel 1725  cvv 2948  cpr 3807 This theorem is referenced by:  preqr2  3965  opthwiener  4450  cusgrafilem2  21481  wopprc  27092  2pthfrgra  28338 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-sn 3812  df-pr 3813
 Copyright terms: Public domain W3C validator