MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1 Unicode version

Theorem preqr1 3786
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1  |-  A  e. 
_V
preqr1.2  |-  B  e. 
_V
Assertion
Ref Expression
preqr1  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5  |-  A  e. 
_V
21prid1 3734 . . . 4  |-  A  e. 
{ A ,  C }
3 eleq2 2344 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
42, 3mpbii 202 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C }
)
51elpr 3658 . . 3  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )
64, 5sylib 188 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
7 preqr1.2 . . . . 5  |-  B  e. 
_V
87prid1 3734 . . . 4  |-  B  e. 
{ B ,  C }
9 eleq2 2344 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
108, 9mpbiri 224 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C }
)
117elpr 3658 . . 3  |-  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) )
1210, 11sylib 188 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) )
13 eqcom 2285 . 2  |-  ( A  =  B  <->  B  =  A )
14 eqeq2 2292 . 2  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
156, 12, 13, 14oplem1 930 1  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    = wceq 1623    e. wcel 1684   _Vcvv 2788   {cpr 3641
This theorem is referenced by:  preqr2  3787  opthwiener  4268  wopprc  27123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator