MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr2 Unicode version

Theorem preqr2 3787
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
preqr2.1  |-  A  e. 
_V
preqr2.2  |-  B  e. 
_V
Assertion
Ref Expression
preqr2  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 3705 . . 3  |-  { C ,  A }  =  { A ,  C }
2 prcom 3705 . . 3  |-  { C ,  B }  =  { B ,  C }
31, 2eqeq12i 2296 . 2  |-  ( { C ,  A }  =  { C ,  B } 
<->  { A ,  C }  =  { B ,  C } )
4 preqr2.1 . . 3  |-  A  e. 
_V
5 preqr2.2 . . 3  |-  B  e. 
_V
64, 5preqr1 3786 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
73, 6sylbi 187 1  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   {cpr 3641
This theorem is referenced by:  preq12b  3788  opth  4245  opthreg  7319  altopthsn  24495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator