MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqsn Unicode version

Theorem preqsn 3808
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1  |-  A  e. 
_V
preqsn.2  |-  B  e. 
_V
preqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
preqsn  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3667 . . 3  |-  { C }  =  { C ,  C }
21eqeq2i 2306 . 2  |-  ( { A ,  B }  =  { C }  <->  { A ,  B }  =  { C ,  C }
)
3 preqsn.1 . . . 4  |-  A  e. 
_V
4 preqsn.2 . . . 4  |-  B  e. 
_V
5 preqsn.3 . . . 4  |-  C  e. 
_V
63, 4, 5, 5preq12b 3804 . . 3  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C )
) )
7 oridm 500 . . . 4  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  C  /\  B  =  C ) )
8 eqtr3 2315 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
9 simpr 447 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  B  =  C )
108, 9jca 518 . . . . 5  |-  ( ( A  =  C  /\  B  =  C )  ->  ( A  =  B  /\  B  =  C ) )
11 eqtr 2313 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  A  =  C )
12 simpr 447 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  B  =  C )
1311, 12jca 518 . . . . 5  |-  ( ( A  =  B  /\  B  =  C )  ->  ( A  =  C  /\  B  =  C ) )
1410, 13impbii 180 . . . 4  |-  ( ( A  =  C  /\  B  =  C )  <->  ( A  =  B  /\  B  =  C )
)
157, 14bitri 240 . . 3  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  B  /\  B  =  C ) )
166, 15bitri 240 . 2  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( A  =  B  /\  B  =  C ) )
172, 16bitri 240 1  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653   {cpr 3654
This theorem is referenced by:  opeqsn  4278  relop  4850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-un 3170  df-sn 3659  df-pr 3660
  Copyright terms: Public domain W3C validator