Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prfunOLD Unicode version

Theorem prfunOLD 26465
 Description: A function with a domain of two elements. (Moved to funpr 5318 in main set.mm and may be deleted by mathbox owner, JM. --NM 26-Aug-2011.) (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
prf.1
prf.2
prf.3
prf.4
Assertion
Ref Expression
prfunOLD

Proof of Theorem prfunOLD
StepHypRef Expression
1 prf.1 . 2
2 prf.2 . 2
3 prf.3 . 2
4 prf.4 . 2
51, 2, 3, 4funpr 5318 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1696   wne 2459  cvv 2801  cpr 3654  cop 3656   wfun 5265 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-fun 5273
 Copyright terms: Public domain W3C validator