Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Unicode version

Theorem pridlnr 26646
 Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1
prdilnr.2
Assertion
Ref Expression
pridlnr

Proof of Theorem pridlnr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4
2 eqid 2436 . . . 4
3 prdilnr.2 . . . 4
41, 2, 3ispridl 26644 . . 3
5 3anan12 949 . . 3
64, 5syl6bb 253 . 2
76simprbda 607 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 358   wa 359   w3a 936   wceq 1652   wcel 1725   wne 2599  wral 2705   wss 3320   crn 4879  cfv 5454  (class class class)co 6081  c1st 6347  c2nd 6348  crngo 21963  cidl 26617  cpridl 26618 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-pridl 26621
 Copyright terms: Public domain W3C validator