MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmfac1 Unicode version

Theorem prmfac1 12813
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )

Proof of Theorem prmfac1
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . . 6  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
21breq2d 4051 . . . . 5  |-  ( x  =  0  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  0 )
) )
3 breq2 4043 . . . . 5  |-  ( x  =  0  ->  ( P  <_  x  <->  P  <_  0 ) )
42, 3imbi12d 311 . . . 4  |-  ( x  =  0  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 0 )  ->  P  <_  0 ) ) )
54imbi2d 307 . . 3  |-  ( x  =  0  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  0 )  ->  P  <_  0
) ) ) )
6 fveq2 5541 . . . . . 6  |-  ( x  =  k  ->  ( ! `  x )  =  ( ! `  k ) )
76breq2d 4051 . . . . 5  |-  ( x  =  k  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  k )
) )
8 breq2 4043 . . . . 5  |-  ( x  =  k  ->  ( P  <_  x  <->  P  <_  k ) )
97, 8imbi12d 311 . . . 4  |-  ( x  =  k  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) ) )
109imbi2d 307 . . 3  |-  ( x  =  k  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  k )  ->  P  <_  k
) ) ) )
11 fveq2 5541 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( ! `  x )  =  ( ! `  ( k  +  1 ) ) )
1211breq2d 4051 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  ( k  +  1 ) ) ) )
13 breq2 4043 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  <_  x  <->  P  <_  ( k  +  1 ) ) )
1412, 13imbi12d 311 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
1514imbi2d 307 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
16 fveq2 5541 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1716breq2d 4051 . . . . 5  |-  ( x  =  N  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  N )
) )
18 breq2 4043 . . . . 5  |-  ( x  =  N  ->  ( P  <_  x  <->  P  <_  N ) )
1917, 18imbi12d 311 . . . 4  |-  ( x  =  N  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 N )  ->  P  <_  N ) ) )
2019imbi2d 307 . . 3  |-  ( x  =  N  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  N )  ->  P  <_  N
) ) ) )
21 fac0 11307 . . . . 5  |-  ( ! `
 0 )  =  1
2221breq2i 4047 . . . 4  |-  ( P 
||  ( ! ` 
0 )  <->  P  ||  1
)
23 nprmdvds1 12806 . . . . 5  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
2423pm2.21d 98 . . . 4  |-  ( P  e.  Prime  ->  ( P 
||  1  ->  P  <_  0 ) )
2522, 24syl5bi 208 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  ( ! ` 
0 )  ->  P  <_  0 ) )
26 facp1 11309 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
2726adantr 451 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
2827breq2d 4051 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
P  ||  ( ( ! `  k )  x.  ( k  +  1 ) ) ) )
29 simpr 447 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  Prime )
30 faccl 11314 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3130adantr 451 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  NN )
3231nnzd 10132 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  ZZ )
33 nn0p1nn 10019 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3433adantr 451 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  NN )
3534nnzd 10132 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  ZZ )
36 euclemma 12803 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( ! `  k )  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( ! `
 k )  x.  ( k  +  1 ) )  <->  ( P  ||  ( ! `  k
)  \/  P  ||  ( k  +  1 ) ) ) )
3729, 32, 35, 36syl3anc 1182 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
( ! `  k
)  x.  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
3828, 37bitrd 244 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
39 nn0re 9990 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
4039adantr 451 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  e.  RR )
4140lep1d 9704 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  <_  ( k  +  1 ) )
42 prmz 12778 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
4342adantl 452 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  ZZ )
4443zred 10133 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  RR )
4534nnred 9777 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  RR )
46 letr 8930 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4744, 40, 45, 46syl3anc 1182 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4841, 47mpan2d 655 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  <_  k  ->  P  <_  ( k  +  1 ) ) )
4948imim2d 48 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  k
)  ->  P  <_  ( k  +  1 ) ) ) )
5049com23 72 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  k )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  P  <_  ( k  +  1 ) ) ) )
51 dvdsle 12590 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  NN )  ->  ( P  ||  ( k  +  1 )  ->  P  <_  ( k  +  1 ) ) )
5243, 34, 51syl2anc 642 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  P  <_  (
k  +  1 ) ) )
5352a1dd 42 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5450, 53jaod 369 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  \/  P  ||  (
k  +  1 ) )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5538, 54sylbid 206 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5655com23 72 . . . . 5  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  (
k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
5756ex 423 . . . 4  |-  ( k  e.  NN0  ->  ( P  e.  Prime  ->  ( ( P  ||  ( ! `
 k )  ->  P  <_  k )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
5857a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( P  e.  Prime  ->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) )  ->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
595, 10, 15, 20, 25, 58nn0ind 10124 . 2  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  ( P 
||  ( ! `  N )  ->  P  <_  N ) ) )
60593imp 1145 1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    <_ cle 8884   NNcn 9762   NN0cn0 9981   ZZcz 10040   !cfa 11304    || cdivides 12547   Primecprime 12774
This theorem is referenced by:  chtublem  20466  bposlem3  20541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775
  Copyright terms: Public domain W3C validator