MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Unicode version

Theorem prmirred 16780
Description: The irreducible elements of  ZZ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
prmirred.1  |-  Z  =  (flds  ZZ )
prmirred.2  |-  I  =  (Irred `  Z )
Assertion
Ref Expression
prmirred  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  ( abs `  A )  e.  Prime ) )

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.2 . . 3  |-  I  =  (Irred `  Z )
2 zsubrg 16757 . . . 4  |-  ZZ  e.  (SubRing ` fld )
3 prmirred.1 . . . . 5  |-  Z  =  (flds  ZZ )
43subrgbas 15882 . . . 4  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  Z )
)
52, 4ax-mp 5 . . 3  |-  ZZ  =  ( Base `  Z )
61, 5irredcl 15814 . 2  |-  ( A  e.  I  ->  A  e.  ZZ )
7 elnn0 10228 . . . . . . 7  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
8 ax-1 6 . . . . . . . 8  |-  ( A  e.  NN  ->  ( A  e.  I  ->  A  e.  NN ) )
93subrgrng 15876 . . . . . . . . . . . 12  |-  ( ZZ  e.  (SubRing ` fld )  ->  Z  e. 
Ring )
102, 9ax-mp 5 . . . . . . . . . . 11  |-  Z  e. 
Ring
11 subrgsubg 15879 . . . . . . . . . . . . . 14  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubGrp ` fld ) )
122, 11ax-mp 5 . . . . . . . . . . . . 13  |-  ZZ  e.  (SubGrp ` fld )
13 cnfld0 16730 . . . . . . . . . . . . . 14  |-  0  =  ( 0g ` fld )
143, 13subg0 14955 . . . . . . . . . . . . 13  |-  ( ZZ  e.  (SubGrp ` fld )  ->  0  =  ( 0g `  Z
) )
1512, 14ax-mp 5 . . . . . . . . . . . 12  |-  0  =  ( 0g `  Z )
161, 15irredn0 15813 . . . . . . . . . . 11  |-  ( ( Z  e.  Ring  /\  A  e.  I )  ->  A  =/=  0 )
1710, 16mpan 653 . . . . . . . . . 10  |-  ( A  e.  I  ->  A  =/=  0 )
1817necon2bi 2652 . . . . . . . . 9  |-  ( A  =  0  ->  -.  A  e.  I )
1918pm2.21d 101 . . . . . . . 8  |-  ( A  =  0  ->  ( A  e.  I  ->  A  e.  NN ) )
208, 19jaoi 370 . . . . . . 7  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ( A  e.  I  ->  A  e.  NN ) )
217, 20sylbi 189 . . . . . 6  |-  ( A  e.  NN0  ->  ( A  e.  I  ->  A  e.  NN ) )
22 prmnn 13087 . . . . . . 7  |-  ( A  e.  Prime  ->  A  e.  NN )
2322a1i 11 . . . . . 6  |-  ( A  e.  NN0  ->  ( A  e.  Prime  ->  A  e.  NN ) )
243, 1prmirredlem 16778 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )
2524a1i 11 . . . . . 6  |-  ( A  e.  NN0  ->  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) ) )
2621, 23, 25pm5.21ndd 345 . . . . 5  |-  ( A  e.  NN0  ->  ( A  e.  I  <->  A  e.  Prime ) )
27 nn0re 10235 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  RR )
28 nn0ge0 10252 . . . . . . 7  |-  ( A  e.  NN0  ->  0  <_  A )
2927, 28absidd 12230 . . . . . 6  |-  ( A  e.  NN0  ->  ( abs `  A )  =  A )
3029eleq1d 2504 . . . . 5  |-  ( A  e.  NN0  ->  ( ( abs `  A )  e.  Prime  <->  A  e.  Prime ) )
3126, 30bitr4d 249 . . . 4  |-  ( A  e.  NN0  ->  ( A  e.  I  <->  ( abs `  A )  e.  Prime ) )
3231adantl 454 . . 3  |-  ( ( A  e.  ZZ  /\  A  e.  NN0 )  -> 
( A  e.  I  <->  ( abs `  A )  e.  Prime ) )
333, 1prmirredlem 16778 . . . . . 6  |-  ( -u A  e.  NN  ->  (
-u A  e.  I  <->  -u A  e.  Prime )
)
3433adantl 454 . . . . 5  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( -u A  e.  I  <->  -u A  e.  Prime ) )
35 eqid 2438 . . . . . . . . 9  |-  ( inv g `  Z )  =  ( inv g `  Z )
361, 35, 5irrednegb 15821 . . . . . . . 8  |-  ( ( Z  e.  Ring  /\  A  e.  ZZ )  ->  ( A  e.  I  <->  ( ( inv g `  Z ) `
 A )  e.  I ) )
3710, 36mpan 653 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  e.  I  <->  ( ( inv g `  Z ) `
 A )  e.  I ) )
38 eqid 2438 . . . . . . . . . . 11  |-  ( inv g ` fld )  =  ( inv g ` fld )
393, 38, 35subginv 14956 . . . . . . . . . 10  |-  ( ( ZZ  e.  (SubGrp ` fld )  /\  A  e.  ZZ )  ->  ( ( inv g ` fld ) `  A )  =  ( ( inv g `  Z ) `
 A ) )
4012, 39mpan 653 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  (
( inv g ` fld ) `  A )  =  ( ( inv g `  Z ) `  A
) )
41 zcn 10292 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  CC )
42 cnfldneg 16732 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( inv g ` fld ) `  A )  =  -u A )
4341, 42syl 16 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  (
( inv g ` fld ) `  A )  =  -u A )
4440, 43eqtr3d 2472 . . . . . . . 8  |-  ( A  e.  ZZ  ->  (
( inv g `  Z ) `  A
)  =  -u A
)
4544eleq1d 2504 . . . . . . 7  |-  ( A  e.  ZZ  ->  (
( ( inv g `  Z ) `  A
)  e.  I  <->  -u A  e.  I ) )
4637, 45bitrd 246 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  e.  I  <->  -u A  e.  I ) )
4746adantr 453 . . . . 5  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( A  e.  I  <->  -u A  e.  I
) )
48 zre 10291 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  RR )
4948adantr 453 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  A  e.  RR )
50 nnnn0 10233 . . . . . . . . . 10  |-  ( -u A  e.  NN  ->  -u A  e.  NN0 )
5150nn0ge0d 10282 . . . . . . . . 9  |-  ( -u A  e.  NN  ->  0  <_  -u A )
5251adantl 454 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  0  <_  -u A
)
5349le0neg1d 9603 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( A  <_ 
0  <->  0  <_  -u A
) )
5452, 53mpbird 225 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  A  <_  0
)
5549, 54absnidd 12221 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( abs `  A
)  =  -u A
)
5655eleq1d 2504 . . . . 5  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( ( abs `  A )  e.  Prime  <->  -u A  e.  Prime ) )
5734, 47, 563bitr4d 278 . . . 4  |-  ( ( A  e.  ZZ  /\  -u A  e.  NN )  ->  ( A  e.  I  <->  ( abs `  A
)  e.  Prime )
)
5857adantrl 698 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  ( A  e.  I  <->  ( abs `  A )  e.  Prime ) )
59 elznn0nn 10300 . . . 4  |-  ( A  e.  ZZ  <->  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )
6059biimpi 188 . . 3  |-  ( A  e.  ZZ  ->  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )
6132, 58, 60mpjaodan 763 . 2  |-  ( A  e.  ZZ  ->  ( A  e.  I  <->  ( abs `  A )  e.  Prime ) )
626, 61biadan2 625 1  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  ( abs `  A )  e.  Prime ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    <_ cle 9126   -ucneg 9297   NNcn 10005   NN0cn0 10226   ZZcz 10287   abscabs 12044   Primecprime 13084   Basecbs 13474   ↾s cress 13475   0gc0g 13728   inv gcminusg 14691  SubGrpcsubg 14943   Ringcrg 15665  Irredcir 15750  SubRingcsubrg 15869  ℂfldccnfld 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-rp 10618  df-fz 11049  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-dvds 12858  df-prm 13085  df-gz 13303  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-subg 14946  df-cmn 15419  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-irred 15753  df-invr 15782  df-dvr 15793  df-drng 15842  df-subrg 15871  df-cnfld 16709
  Copyright terms: Public domain W3C validator