MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Unicode version

Theorem prmrec 13292
Description: The sum of the reciprocals of the primes diverges. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f  |-  F  =  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k ) )
Assertion
Ref Expression
prmrec  |-  -.  F  e.  dom  ~~>
Distinct variable group:    k, n
Allowed substitution hints:    F( k, n)

Proof of Theorem prmrec
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eleq1 2498 . . . . 5  |-  ( m  =  k  ->  (
m  e.  Prime  <->  k  e.  Prime ) )
2 oveq2 6091 . . . . 5  |-  ( m  =  k  ->  (
1  /  m )  =  ( 1  / 
k ) )
3 eqidd 2439 . . . . 5  |-  ( m  =  k  ->  0  =  0 )
41, 2, 3ifbieq12d 3763 . . . 4  |-  ( m  =  k  ->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 )  =  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
54cbvmptv 4302 . . 3  |-  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) )  =  ( k  e.  NN  |->  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
65prmreclem6 13291 . 2  |-  -.  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  e.  dom  ~~>
7 inss2 3564 . . . . . . . . 9  |-  ( Prime  i^i  ( 1 ... n
) )  C_  (
1 ... n )
87sseli 3346 . . . . . . . . . . 11  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  ->  k  e.  ( 1 ... n
) )
9 elfznn 11082 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
10 nnrecre 10038 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1110recnd 9116 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  /  k )  e.  CC )
128, 9, 113syl 19 . . . . . . . . . 10  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  ->  (
1  /  k )  e.  CC )
1312rgen 2773 . . . . . . . . 9  |-  A. k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  e.  CC
147, 13pm3.2i 443 . . . . . . . 8  |-  ( ( Prime  i^i  ( 1 ... n ) ) 
C_  ( 1 ... n )  /\  A. k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  e.  CC )
15 fzfi 11313 . . . . . . . . 9  |-  ( 1 ... n )  e. 
Fin
1615olci 382 . . . . . . . 8  |-  ( ( 1 ... n ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... n )  e. 
Fin )
17 sumss2 12522 . . . . . . . 8  |-  ( ( ( ( Prime  i^i  ( 1 ... n
) )  C_  (
1 ... n )  /\  A. k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  e.  CC )  /\  (
( 1 ... n
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... n )  e. 
Fin ) )  ->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  = 
sum_ k  e.  ( 1 ... n ) if ( k  e.  ( Prime  i^i  (
1 ... n ) ) ,  ( 1  / 
k ) ,  0 ) )
1814, 16, 17mp2an 655 . . . . . . 7  |-  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  sum_ k  e.  ( 1 ... n
) if ( k  e.  ( Prime  i^i  ( 1 ... n
) ) ,  ( 1  /  k ) ,  0 )
19 elin 3532 . . . . . . . . . 10  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  <->  ( k  e.  Prime  /\  k  e.  ( 1 ... n
) ) )
2019rbaib 875 . . . . . . . . 9  |-  ( k  e.  ( 1 ... n )  ->  (
k  e.  ( Prime  i^i  ( 1 ... n
) )  <->  k  e.  Prime ) )
2120ifbid 3759 . . . . . . . 8  |-  ( k  e.  ( 1 ... n )  ->  if ( k  e.  ( Prime  i^i  ( 1 ... n ) ) ,  ( 1  / 
k ) ,  0 )  =  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
2221sumeq2i 12495 . . . . . . 7  |-  sum_ k  e.  ( 1 ... n
) if ( k  e.  ( Prime  i^i  ( 1 ... n
) ) ,  ( 1  /  k ) ,  0 )  = 
sum_ k  e.  ( 1 ... n ) if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 )
2318, 22eqtri 2458 . . . . . 6  |-  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  sum_ k  e.  ( 1 ... n
) if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )
249adantl 454 . . . . . . . 8  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  k  e.  NN )
25 prmnn 13084 . . . . . . . . . . . 12  |-  ( k  e.  Prime  ->  k  e.  NN )
2625, 11syl 16 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  ( 1  /  k )  e.  CC )
2726adantl 454 . . . . . . . . . 10  |-  ( (  T.  /\  k  e. 
Prime )  ->  ( 1  /  k )  e.  CC )
28 0cn 9086 . . . . . . . . . . 11  |-  0  e.  CC
2928a1i 11 . . . . . . . . . 10  |-  ( (  T.  /\  -.  k  e.  Prime )  ->  0  e.  CC )
3027, 29ifclda 3768 . . . . . . . . 9  |-  (  T. 
->  if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 )  e.  CC )
3130trud 1333 . . . . . . . 8  |-  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  e.  CC
325fvmpt2 5814 . . . . . . . 8  |-  ( ( k  e.  NN  /\  if ( k  e.  Prime ,  ( 1  /  k
) ,  0 )  e.  CC )  -> 
( ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) `  k )  =  if ( k  e.  Prime ,  ( 1  /  k
) ,  0 ) )
3324, 31, 32sylancl 645 . . . . . . 7  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 ) )
34 id 21 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN )
35 nnuz 10523 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2528 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
3731a1i 11 . . . . . . 7  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  e.  CC )
3833, 36, 37fsumser 12526 . . . . . 6  |-  ( n  e.  NN  ->  sum_ k  e.  ( 1 ... n
) if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  =  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
3923, 38syl5eq 2482 . . . . 5  |-  ( n  e.  NN  ->  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) ) `  n
) )
4039mpteq2ia 4293 . . . 4  |-  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
41 prmrec.f . . . 4  |-  F  =  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k ) )
42 1z 10313 . . . . . . 7  |-  1  e.  ZZ
43 seqfn 11337 . . . . . . 7  |-  ( 1  e.  ZZ  ->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 ) )
4442, 43ax-mp 8 . . . . . 6  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 )
4535fneq2i 5542 . . . . . 6  |-  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN  <->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 ) )
4644, 45mpbir 202 . . . . 5  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN
47 dffn5 5774 . . . . 5  |-  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN  <->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) ) )
4846, 47mpbi 201 . . . 4  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
4940, 41, 483eqtr4i 2468 . . 3  |-  F  =  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) )
5049eleq1i 2501 . 2  |-  ( F  e.  dom  ~~>  <->  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  e.  dom  ~~>  )
516, 50mtbir 292 1  |-  -.  F  e.  dom  ~~>
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 359    /\ wa 360    T. wtru 1326    = wceq 1653    e. wcel 1726   A.wral 2707    i^i cin 3321    C_ wss 3322   ifcif 3741    e. cmpt 4268   dom cdm 4880    Fn wfn 5451   ` cfv 5456  (class class class)co 6083   Fincfn 7111   CCcc 8990   0cc0 8992   1c1 8993    + caddc 8995    / cdiv 9679   NNcn 10002   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045    seq cseq 11325    ~~> cli 12280   sum_csu 12481   Primecprime 13081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-q 10577  df-rp 10615  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-rlim 12285  df-sum 12482  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213
  Copyright terms: Public domain W3C validator