MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prn0 Unicode version

Theorem prn0 8613
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prn0  |-  ( A  e.  P.  ->  A  =/=  (/) )

Proof of Theorem prn0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 8612 . . 3  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
2 simpl2 959 . . 3  |-  ( ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )  ->  (/)  C.  A
)
31, 2sylbi 187 . 2  |-  ( A  e.  P.  ->  (/)  C.  A
)
4 0pss 3492 . 2  |-  ( (/)  C.  A  <->  A  =/=  (/) )
53, 4sylib 188 1  |-  ( A  e.  P.  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C. wpss 3153   (/)c0 3455   class class class wbr 4023   Q.cnq 8474    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  0npr  8616  npomex  8620  genpn0  8627  prlem934  8657  ltaddpr  8658  prlem936  8671  reclem2pr  8672  suplem1pr  8676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-np 8605
  Copyright terms: Public domain W3C validator