MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Unicode version

Theorem prnmadd 8637
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmadd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prnmax 8635 . 2  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. y  e.  A  B  <Q  y )
2 ltrelnq 8566 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4753 . . . . . 6  |-  ( B 
<Q  y  ->  ( B  e.  Q.  /\  y  e.  Q. ) )
43simprd 449 . . . . 5  |-  ( B 
<Q  y  ->  y  e. 
Q. )
5 ltexnq 8615 . . . . . 6  |-  ( y  e.  Q.  ->  ( B  <Q  y  <->  E. x
( B  +Q  x
)  =  y ) )
65biimpcd 215 . . . . 5  |-  ( B 
<Q  y  ->  ( y  e.  Q.  ->  E. x
( B  +Q  x
)  =  y ) )
74, 6mpd 14 . . . 4  |-  ( B 
<Q  y  ->  E. x
( B  +Q  x
)  =  y )
8 eleq1a 2365 . . . . 5  |-  ( y  e.  A  ->  (
( B  +Q  x
)  =  y  -> 
( B  +Q  x
)  e.  A ) )
98eximdv 1612 . . . 4  |-  ( y  e.  A  ->  ( E. x ( B  +Q  x )  =  y  ->  E. x ( B  +Q  x )  e.  A ) )
107, 9syl5 28 . . 3  |-  ( y  e.  A  ->  ( B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A ) )
1110rexlimiv 2674 . 2  |-  ( E. y  e.  A  B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A )
121, 11syl 15 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   Q.cnq 8490    +Q cplq 8493    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  ltexprlem1  8676  ltexprlem7  8682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-ltnq 8558  df-np 8621
  Copyright terms: Public domain W3C validator