MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Unicode version

Theorem prnmadd 8807
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmadd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prnmax 8805 . 2  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. y  e.  A  B  <Q  y )
2 ltrelnq 8736 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4866 . . . . . 6  |-  ( B 
<Q  y  ->  ( B  e.  Q.  /\  y  e.  Q. ) )
43simprd 450 . . . . 5  |-  ( B 
<Q  y  ->  y  e. 
Q. )
5 ltexnq 8785 . . . . . 6  |-  ( y  e.  Q.  ->  ( B  <Q  y  <->  E. x
( B  +Q  x
)  =  y ) )
65biimpcd 216 . . . . 5  |-  ( B 
<Q  y  ->  ( y  e.  Q.  ->  E. x
( B  +Q  x
)  =  y ) )
74, 6mpd 15 . . . 4  |-  ( B 
<Q  y  ->  E. x
( B  +Q  x
)  =  y )
8 eleq1a 2456 . . . . 5  |-  ( y  e.  A  ->  (
( B  +Q  x
)  =  y  -> 
( B  +Q  x
)  e.  A ) )
98eximdv 1629 . . . 4  |-  ( y  e.  A  ->  ( E. x ( B  +Q  x )  =  y  ->  E. x ( B  +Q  x )  e.  A ) )
107, 9syl5 30 . . 3  |-  ( y  e.  A  ->  ( B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A ) )
1110rexlimiv 2767 . 2  |-  ( E. y  e.  A  B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A )
121, 11syl 16 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153  (class class class)co 6020   Q.cnq 8660    +Q cplq 8663    <Q cltq 8666   P.cnp 8667
This theorem is referenced by:  ltexprlem1  8846  ltexprlem7  8852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-omul 6665  df-er 6841  df-ni 8682  df-pli 8683  df-mi 8684  df-lti 8685  df-plpq 8718  df-mpq 8719  df-ltpq 8720  df-enq 8721  df-nq 8722  df-erq 8723  df-plq 8724  df-mq 8725  df-1nq 8726  df-ltnq 8728  df-np 8791
  Copyright terms: Public domain W3C validator