Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodeq1f Structured version   Unicode version

Theorem prodeq1f 25236
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
prodeq1f.1  |-  F/_ k A
prodeq1f.2  |-  F/_ k B
Assertion
Ref Expression
prodeq1f  |-  ( A  =  B  ->  prod_ k  e.  A C  = 
prod_ k  e.  B C )

Proof of Theorem prodeq1f
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3371 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 prodeq1f.1 . . . . . . . . . . . . 13  |-  F/_ k A
3 prodeq1f.2 . . . . . . . . . . . . 13  |-  F/_ k B
42, 3nfeq 2581 . . . . . . . . . . . 12  |-  F/ k  A  =  B
5 eleq2 2499 . . . . . . . . . . . . . 14  |-  ( A  =  B  ->  (
k  e.  A  <->  k  e.  B ) )
65ifbid 3759 . . . . . . . . . . . . 13  |-  ( A  =  B  ->  if ( k  e.  A ,  C ,  1 )  =  if ( k  e.  B ,  C ,  1 ) )
76adantr 453 . . . . . . . . . . . 12  |-  ( ( A  =  B  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  C , 
1 )  =  if ( k  e.  B ,  C ,  1 ) )
84, 7mpteq2da 4296 . . . . . . . . . . 11  |-  ( A  =  B  ->  (
k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )
98seqeq3d 11333 . . . . . . . . . 10  |-  ( A  =  B  ->  seq  n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  =  seq  n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) ) )
109breq1d 4224 . . . . . . . . 9  |-  ( A  =  B  ->  (  seq  n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y  <->  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) )
1110anbi2d 686 . . . . . . . 8  |-  ( A  =  B  ->  (
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
1211exbidv 1637 . . . . . . 7  |-  ( A  =  B  ->  ( E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
1312rexbidv 2728 . . . . . 6  |-  ( A  =  B  ->  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) ) )
148seqeq3d 11333 . . . . . . 7  |-  ( A  =  B  ->  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  =  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) ) )
1514breq1d 4224 . . . . . 6  |-  ( A  =  B  ->  (  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x  <->  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) )
161, 13, 153anbi123d 1255 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  <-> 
( B  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) ) )
1716rexbidv 2728 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x ) ) )
18 f1oeq3 5669 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1918anbi1d 687 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
2019exbidv 1637 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
2120rexbidv 2728 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
2217, 21orbi12d 692 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
2322iotabidv 5441 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
24 df-prod 25234 . 2  |-  prod_ k  e.  A C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
25 df-prod 25234 . 2  |-  prod_ k  e.  B C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
2623, 24, 253eqtr4g 2495 1  |-  ( A  =  B  ->  prod_ k  e.  A C  = 
prod_ k  e.  B C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   F/_wnfc 2561    =/= wne 2601   E.wrex 2708   [_csb 3253    C_ wss 3322   ifcif 3741   class class class wbr 4214    e. cmpt 4268   iotacio 5418   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083   0cc0 8992   1c1 8993    x. cmul 8997   NNcn 10002   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045    seq cseq 11325    ~~> cli 12280   prod_cprod 25233
This theorem is referenced by:  prodeq1  25237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-cnv 4888  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-recs 6635  df-rdg 6670  df-seq 11326  df-prod 25234
  Copyright terms: Public domain W3C validator