Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodeq2d Unicode version

Theorem prodeq2d 25314
Description: Conditions for two composites to be equal. (Contributed by FL, 5-Sep-2010.)
Hypothesis
Ref Expression
prodeq2d.2  |-  ( ph  ->  G  =  H )
Assertion
Ref Expression
prodeq2d  |-  ( ph  ->  prod_ k  e.  A G C  =  prod_ k  e.  A H C )

Proof of Theorem prodeq2d
StepHypRef Expression
1 prodeq2d.2 . 2  |-  ( ph  ->  G  =  H )
2 prodeq2 25307 . 2  |-  ( G  =  H  ->  prod_ k  e.  A G C  =  prod_ k  e.  A H C )
31, 2syl 15 1  |-  ( ph  ->  prod_ k  e.  A G C  =  prod_ k  e.  A H C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   prod_cprd 25298
This theorem is referenced by:  prodeq123d  25316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-seq 11047  df-prod 25299
  Copyright terms: Public domain W3C validator