MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodgt0 Unicode version

Theorem prodgt0 9787
Description: Infer that a multiplicand is positive from a nonnegative muliplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )

Proof of Theorem prodgt0
StepHypRef Expression
1 0re 9024 . . . . 5  |-  0  e.  RR
21a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  0  e.  RR )
3 simpl 444 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
42, 3leloed 9148 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
5 simpll 731 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  RR )
6 simplr 732 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  RR )
75, 6remulcld 9049 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  RR )
8 simprl 733 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  A )
98gt0ne0d 9523 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  =/=  0 )
105, 9rereccld 9773 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
1  /  A )  e.  RR )
11 simprr 734 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( A  x.  B
) )
12 recgt0 9786 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
1312ad2ant2r 728 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( 1  /  A
) )
147, 10, 11, 13mulgt0d 9157 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( ( A  x.  B )  x.  (
1  /  A ) ) )
157recnd 9047 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  CC )
165recnd 9047 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  CC )
1715, 16, 9divrecd 9725 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  ( ( A  x.  B )  x.  ( 1  /  A
) ) )
18 simpr 448 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1918recnd 9047 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
2019adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  CC )
2120, 16, 9divcan3d 9727 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  B )
2217, 21eqtr3d 2421 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  x.  ( 1  /  A ) )  =  B )
2314, 22breqtrd 4177 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  B )
2423exp32 589 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  ->  ( 0  <  ( A  x.  B )  ->  0  <  B ) ) )
251ltnri 9115 . . . . . . 7  |-  -.  0  <  0
2619mul02d 9196 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  x.  B
)  =  0 )
2726breq2d 4165 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  (
0  x.  B )  <->  0  <  0 ) )
2825, 27mtbiri 295 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  0  <  (
0  x.  B ) )
2928pm2.21d 100 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  (
0  x.  B )  ->  0  <  B
) )
30 oveq1 6027 . . . . . . 7  |-  ( 0  =  A  ->  (
0  x.  B )  =  ( A  x.  B ) )
3130breq2d 4165 . . . . . 6  |-  ( 0  =  A  ->  (
0  <  ( 0  x.  B )  <->  0  <  ( A  x.  B ) ) )
3231imbi1d 309 . . . . 5  |-  ( 0  =  A  ->  (
( 0  <  (
0  x.  B )  ->  0  <  B
)  <->  ( 0  < 
( A  x.  B
)  ->  0  <  B ) ) )
3329, 32syl5ibcom 212 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  =  A  ->  ( 0  < 
( A  x.  B
)  ->  0  <  B ) ) )
3424, 33jaod 370 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  \/  0  =  A )  ->  (
0  <  ( A  x.  B )  ->  0  <  B ) ) )
354, 34sylbid 207 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  A  ->  ( 0  <  ( A  x.  B )  ->  0  <  B ) ) )
3635imp32 423 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   class class class wbr 4153  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    < clt 9053    <_ cle 9054    / cdiv 9609
This theorem is referenced by:  prodgt02  9788  prodgt0i  9849
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610
  Copyright terms: Public domain W3C validator