Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1mul Unicode version

Theorem proot1mul 27184
Description: Any primitive  N-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.)
Hypotheses
Ref Expression
idomsubgmo.g  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
proot1mul.o  |-  O  =  ( od `  G
)
proot1mul.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
proot1mul  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  X  e.  ( K `  { Y } ) )

Proof of Theorem proot1mul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  R  e. IDomn )
2 isidom 16291 . . . . . . . 8  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
32simprbi 451 . . . . . . 7  |-  ( R  e. IDomn  ->  R  e. Domn )
4 domnrng 16283 . . . . . . 7  |-  ( R  e. Domn  ->  R  e.  Ring )
53, 4syl 16 . . . . . 6  |-  ( R  e. IDomn  ->  R  e.  Ring )
6 eqid 2387 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
7 idomsubgmo.g . . . . . . 7  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
86, 7unitgrp 15699 . . . . . 6  |-  ( R  e.  Ring  ->  G  e. 
Grp )
91, 5, 83syl 19 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  G  e.  Grp )
10 eqid 2387 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1110subgacs 14902 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
12 acsmre 13804 . . . . 5  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
139, 11, 123syl 19 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
14 proot1mul.k . . . 4  |-  K  =  (mrCls `  (SubGrp `  G
) )
15 simprl 733 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  X  e.  ( `' O " { N } ) )
16 proot1mul.o . . . . . . . . 9  |-  O  =  ( od `  G
)
1710, 16odf 15102 . . . . . . . 8  |-  O :
( Base `  G ) --> NN0
18 ffn 5531 . . . . . . . 8  |-  ( O : ( Base `  G
) --> NN0  ->  O  Fn  ( Base `  G )
)
19 fniniseg 5790 . . . . . . . 8  |-  ( O  Fn  ( Base `  G
)  ->  ( X  e.  ( `' O " { N } )  <->  ( X  e.  ( Base `  G
)  /\  ( O `  X )  =  N ) ) )
2017, 18, 19mp2b 10 . . . . . . 7  |-  ( X  e.  ( `' O " { N } )  <-> 
( X  e.  (
Base `  G )  /\  ( O `  X
)  =  N ) )
2115, 20sylib 189 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( X  e.  ( Base `  G
)  /\  ( O `  X )  =  N ) )
2221simpld 446 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  X  e.  (
Base `  G )
)
2322snssd 3886 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  { X }  C_  ( Base `  G
) )
2413, 14, 23mrcssidd 13777 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  { X }  C_  ( K `  { X } ) )
25 snssg 3875 . . . 4  |-  ( X  e.  ( `' O " { N } )  ->  ( X  e.  ( K `  { X } )  <->  { X }  C_  ( K `  { X } ) ) )
2615, 25syl 16 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( X  e.  ( K `  { X } )  <->  { X }  C_  ( K `  { X } ) ) )
2724, 26mpbird 224 . 2  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  X  e.  ( K `  { X } ) )
287idomsubgmo 27183 . . . 4  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  E* x  e.  (SubGrp `  G
) ( # `  x
)  =  N )
2928adantr 452 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  E* x  e.  (SubGrp `  G )
( # `  x )  =  N )
3014mrccl 13763 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  { X }  C_  ( Base `  G ) )  ->  ( K `  { X } )  e.  (SubGrp `  G )
)
3113, 23, 30syl2anc 643 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( K `  { X } )  e.  (SubGrp `  G )
)
3221simprd 450 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( O `  X )  =  N )
33 simplr 732 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  N  e.  NN )
3432, 33eqeltrd 2461 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( O `  X )  e.  NN )
3510, 16, 14odhash2 15136 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  ( Base `  G )  /\  ( O `  X )  e.  NN )  ->  ( # `
 ( K `  { X } ) )  =  ( O `  X ) )
369, 22, 34, 35syl3anc 1184 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( # `  ( K `  { X } ) )  =  ( O `  X
) )
3736, 32eqtrd 2419 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( # `  ( K `  { X } ) )  =  N )
38 simprr 734 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  Y  e.  ( `' O " { N } ) )
39 fniniseg 5790 . . . . . . . 8  |-  ( O  Fn  ( Base `  G
)  ->  ( Y  e.  ( `' O " { N } )  <->  ( Y  e.  ( Base `  G
)  /\  ( O `  Y )  =  N ) ) )
4017, 18, 39mp2b 10 . . . . . . 7  |-  ( Y  e.  ( `' O " { N } )  <-> 
( Y  e.  (
Base `  G )  /\  ( O `  Y
)  =  N ) )
4138, 40sylib 189 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( Y  e.  ( Base `  G
)  /\  ( O `  Y )  =  N ) )
4241simpld 446 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  Y  e.  (
Base `  G )
)
4342snssd 3886 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  { Y }  C_  ( Base `  G
) )
4414mrccl 13763 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  { Y }  C_  ( Base `  G ) )  ->  ( K `  { Y } )  e.  (SubGrp `  G )
)
4513, 43, 44syl2anc 643 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( K `  { Y } )  e.  (SubGrp `  G )
)
4641simprd 450 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( O `  Y )  =  N )
4746, 33eqeltrd 2461 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( O `  Y )  e.  NN )
4810, 16, 14odhash2 15136 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  ( Base `  G )  /\  ( O `  Y )  e.  NN )  ->  ( # `
 ( K `  { Y } ) )  =  ( O `  Y ) )
499, 42, 47, 48syl3anc 1184 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( # `  ( K `  { Y } ) )  =  ( O `  Y
) )
5049, 46eqtrd 2419 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( # `  ( K `  { Y } ) )  =  N )
51 fveq2 5668 . . . . 5  |-  ( x  =  ( K `  { X } )  -> 
( # `  x )  =  ( # `  ( K `  { X } ) ) )
5251eqeq1d 2395 . . . 4  |-  ( x  =  ( K `  { X } )  -> 
( ( # `  x
)  =  N  <->  ( # `  ( K `  { X } ) )  =  N ) )
53 fveq2 5668 . . . . 5  |-  ( x  =  ( K `  { Y } )  -> 
( # `  x )  =  ( # `  ( K `  { Y } ) ) )
5453eqeq1d 2395 . . . 4  |-  ( x  =  ( K `  { Y } )  -> 
( ( # `  x
)  =  N  <->  ( # `  ( K `  { Y } ) )  =  N ) )
5552, 54rmoi 3193 . . 3  |-  ( ( E* x  e.  (SubGrp `  G ) ( # `  x )  =  N  /\  ( ( K `
 { X }
)  e.  (SubGrp `  G )  /\  ( # `
 ( K `  { X } ) )  =  N )  /\  ( ( K `  { Y } )  e.  (SubGrp `  G )  /\  ( # `  ( K `  { Y } ) )  =  N ) )  -> 
( K `  { X } )  =  ( K `  { Y } ) )
5629, 31, 37, 45, 50, 55syl122anc 1193 . 2  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  ( K `  { X } )  =  ( K `  { Y } ) )
5727, 56eleqtrd 2463 1  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( X  e.  ( `' O " { N }
)  /\  Y  e.  ( `' O " { N } ) ) )  ->  X  e.  ( K `  { Y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E*wrmo 2652    C_ wss 3263   {csn 3757   `'ccnv 4817   "cima 4821    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   NNcn 9932   NN0cn0 10153   #chash 11545   Basecbs 13396   ↾s cress 13397  Moorecmre 13734  mrClscmrc 13735  ACScacs 13737   Grpcgrp 14612  SubGrpcsubg 14865   odcod 15090  mulGrpcmgp 15575   Ringcrg 15587   CRingccrg 15588  Unitcui 15671  Domncdomn 16267  IDomncidom 16268
This theorem is referenced by:  proot1hash  27188
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-disj 4124  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-omul 6665  df-er 6841  df-ec 6843  df-qs 6847  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-acn 7762  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-rp 10545  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-dvds 12780  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-prds 13598  df-pws 13600  df-0g 13654  df-gsum 13655  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-eqg 14870  df-ghm 14931  df-cntz 15043  df-od 15094  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-rnghom 15746  df-subrg 15793  df-lmod 15879  df-lss 15936  df-lsp 15975  df-nzr 16256  df-rlreg 16270  df-domn 16271  df-idom 16272  df-assa 16299  df-asp 16300  df-ascl 16301  df-psr 16344  df-mvr 16345  df-mpl 16346  df-evls 16347  df-evl 16348  df-opsr 16352  df-psr1 16503  df-vr1 16504  df-ply1 16505  df-evl1 16507  df-coe1 16508  df-cnfld 16627  df-mdeg 19845  df-deg1 19846  df-mon1 19920  df-uc1p 19921  df-q1p 19922  df-r1p 19923
  Copyright terms: Public domain W3C validator