MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prpssnq Unicode version

Theorem prpssnq 8630
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prpssnq  |-  ( A  e.  P.  ->  A  C.  Q. )

Proof of Theorem prpssnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 8628 . 2  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
2 simpl3 960 . 2  |-  ( ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )  ->  A  C.  Q. )
31, 2sylbi 187 1  |-  ( A  e.  P.  ->  A  C.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C. wpss 3166   (/)c0 3468   class class class wbr 4039   Q.cnq 8490    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  elprnq  8631  npomex  8636  genpnnp  8645  prlem934  8673  ltexprlem2  8677  reclem2pr  8688  suplem1pr  8692  wuncn  8808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-pss 3181  df-np 8621
  Copyright terms: Public domain W3C validator