Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter3 Structured version   Unicode version

Theorem prter3 26731
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prter3  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  .~  =  S )
Distinct variable group:    x, u, y, A
Allowed substitution hints:    .~ ( x, y, u)    S( x, y, u)

Proof of Theorem prter3
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6914 . . 3  |-  ( S  Er  U. A  ->  Rel  S )
21adantr 452 . 2  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  Rel  S )
3 prtlem18.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
43relopabi 5000 . . 3  |-  Rel  .~
53prtlem13 26717 . . . . . 6  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
6 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  S  Er  U. A )
7 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  v  e.  A )
8 ne0i 3634 . . . . . . . . . . . . . . . 16  |-  ( z  e.  v  ->  v  =/=  (/) )
98ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  v  =/=  (/) )
10 eldifsn 3927 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( A  \  { (/) } )  <->  ( v  e.  A  /\  v  =/=  (/) ) )
117, 9, 10sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  v  e.  ( A  \  { (/) } ) )
12 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  ( U. A /. S )  =  ( A  \  { (/)
} ) )
1311, 12eleqtrrd 2513 . . . . . . . . . . . . 13  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  v  e.  ( U. A /. S
) )
14 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  z  e.  v )
15 qsel 6983 . . . . . . . . . . . . 13  |-  ( ( S  Er  U. A  /\  v  e.  ( U. A /. S )  /\  z  e.  v )  ->  v  =  [ z ] S
)
166, 13, 14, 15syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  v  =  [ z ] S
)
1716eleq2d 2503 . . . . . . . . . . 11  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  ( w  e.  v  <->  w  e.  [ z ] S ) )
18 vex 2959 . . . . . . . . . . . 12  |-  w  e. 
_V
19 vex 2959 . . . . . . . . . . . 12  |-  z  e. 
_V
2018, 19elec 6944 . . . . . . . . . . 11  |-  ( w  e.  [ z ] S  <->  z S w )
2117, 20syl6bb 253 . . . . . . . . . 10  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  (
v  e.  A  /\  z  e.  v )
)  ->  ( w  e.  v  <->  z S w ) )
2221anassrs 630 . . . . . . . . 9  |-  ( ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/)
} ) )  /\  v  e.  A )  /\  z  e.  v
)  ->  ( w  e.  v  <->  z S w ) )
2322pm5.32da 623 . . . . . . . 8  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  v  e.  A )  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  z S w ) ) )
2423rexbidva 2722 . . . . . . 7  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  ( E. v  e.  A  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  A  ( z  e.  v  /\  z S w ) ) )
25 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  z S w )  ->  S  Er  U. A )
26 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  z S w )  -> 
z S w )
2725, 26ercl 6916 . . . . . . . . . . 11  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  z S w )  -> 
z  e.  U. A
)
28 eluni2 4019 . . . . . . . . . . 11  |-  ( z  e.  U. A  <->  E. v  e.  A  z  e.  v )
2927, 28sylib 189 . . . . . . . . . 10  |-  ( ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  /\  z S w )  ->  E. v  e.  A  z  e.  v )
3029ex 424 . . . . . . . . 9  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  (
z S w  ->  E. v  e.  A  z  e.  v )
)
3130pm4.71rd 617 . . . . . . . 8  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  (
z S w  <->  ( E. v  e.  A  z  e.  v  /\  z S w ) ) )
32 r19.41v 2861 . . . . . . . 8  |-  ( E. v  e.  A  ( z  e.  v  /\  z S w )  <->  ( E. v  e.  A  z  e.  v  /\  z S w ) )
3331, 32syl6bbr 255 . . . . . . 7  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  (
z S w  <->  E. v  e.  A  ( z  e.  v  /\  z S w ) ) )
3424, 33bitr4d 248 . . . . . 6  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  ( E. v  e.  A  ( z  e.  v  /\  w  e.  v )  <->  z S w ) )
355, 34syl5bb 249 . . . . 5  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  (
z  .~  w  <->  z S w ) )
3635adantl 453 . . . 4  |-  ( ( ( Rel  .~  /\  Rel  S )  /\  ( S  Er  U. A  /\  ( U. A /. S
)  =  ( A 
\  { (/) } ) ) )  ->  (
z  .~  w  <->  z S w ) )
3736eqbrrdv2 26712 . . 3  |-  ( ( ( Rel  .~  /\  Rel  S )  /\  ( S  Er  U. A  /\  ( U. A /. S
)  =  ( A 
\  { (/) } ) ) )  ->  .~  =  S )
384, 37mpanl1 662 . 2  |-  ( ( Rel  S  /\  ( S  Er  U. A  /\  ( U. A /. S
)  =  ( A 
\  { (/) } ) ) )  ->  .~  =  S )
392, 38mpancom 651 1  |-  ( ( S  Er  U. A  /\  ( U. A /. S )  =  ( A  \  { (/) } ) )  ->  .~  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706    \ cdif 3317   (/)c0 3628   {csn 3814   U.cuni 4015   class class class wbr 4212   {copab 4265   Rel wrel 4883    Er wer 6902   [cec 6903   /.cqs 6904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-er 6905  df-ec 6907  df-qs 6911
  Copyright terms: Public domain W3C validator