MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prth Unicode version

Theorem prth 557
Description: Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 548. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
prth  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )

Proof of Theorem prth
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ph  ->  ps ) )
2 simpr 449 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ch  ->  th ) )
31, 2anim12d 548 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  mo  2140  2mo  2196  euind  2927  reuind  2943  reuss2  3423  opelopabt  4249  reusv3i  4513  tfrlem5  6364  wemaplem2  7230  rexanre  11795  rlimcn2  12029  o1of2  12051  o1rlimmul  12057  2sqlem6  20570  spanuni  22083  pm11.71  26963
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator