Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem11 Structured version   Unicode version

Theorem prtlem11 26715
Description: Lemma for prter2 26730. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
prtlem11  |-  ( B  e.  D  ->  ( C  e.  A  ->  ( B  =  [ C ]  .~  ->  B  e.  ( A /.  .~  )
) ) )

Proof of Theorem prtlem11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 risset 2753 . . . 4  |-  ( C  e.  A  <->  E. x  e.  A  x  =  C )
2 r19.41v 2861 . . . . 5  |-  ( E. x  e.  A  ( x  =  C  /\  B  =  [ C ]  .~  )  <->  ( E. x  e.  A  x  =  C  /\  B  =  [ C ]  .~  ) )
3 eceq1 6941 . . . . . . 7  |-  ( x  =  C  ->  [ x ]  .~  =  [ C ]  .~  )
4 eqtr3 2455 . . . . . . . 8  |-  ( ( [ x ]  .~  =  [ C ]  .~  /\  B  =  [ C ]  .~  )  ->  [ x ]  .~  =  B )
54eqcomd 2441 . . . . . . 7  |-  ( ( [ x ]  .~  =  [ C ]  .~  /\  B  =  [ C ]  .~  )  ->  B  =  [ x ]  .~  )
63, 5sylan 458 . . . . . 6  |-  ( ( x  =  C  /\  B  =  [ C ]  .~  )  ->  B  =  [ x ]  .~  )
76reximi 2813 . . . . 5  |-  ( E. x  e.  A  ( x  =  C  /\  B  =  [ C ]  .~  )  ->  E. x  e.  A  B  =  [ x ]  .~  )
82, 7sylbir 205 . . . 4  |-  ( ( E. x  e.  A  x  =  C  /\  B  =  [ C ]  .~  )  ->  E. x  e.  A  B  =  [ x ]  .~  )
91, 8sylanb 459 . . 3  |-  ( ( C  e.  A  /\  B  =  [ C ]  .~  )  ->  E. x  e.  A  B  =  [ x ]  .~  )
10 elqsg 6956 . . 3  |-  ( B  e.  D  ->  ( B  e.  ( A /.  .~  )  <->  E. x  e.  A  B  =  [ x ]  .~  ) )
119, 10syl5ibr 213 . 2  |-  ( B  e.  D  ->  (
( C  e.  A  /\  B  =  [ C ]  .~  )  ->  B  e.  ( A /.  .~  ) ) )
1211exp3a 426 1  |-  ( B  e.  D  ->  ( C  e.  A  ->  ( B  =  [ C ]  .~  ->  B  e.  ( A /.  .~  )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   [cec 6903   /.cqs 6904
This theorem is referenced by:  prter2  26730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-ec 6907  df-qs 6911
  Copyright terms: Public domain W3C validator