Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem13 Unicode version

Theorem prtlem13 26736
Description: Lemma for prter1 26747, prter2 26749, prter3 26750 and prtex 26748. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prtlem13  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
Distinct variable groups:    v, u, x, y, A    w, v, x, y    z, v, x, y
Allowed substitution hints:    A( z, w)    .~ ( x, y, z, w, v, u)

Proof of Theorem prtlem13
StepHypRef Expression
1 vex 2791 . 2  |-  z  e. 
_V
2 vex 2791 . 2  |-  w  e. 
_V
3 elequ2 1689 . . . . 5  |-  ( u  =  v  ->  (
x  e.  u  <->  x  e.  v ) )
4 elequ2 1689 . . . . 5  |-  ( u  =  v  ->  (
y  e.  u  <->  y  e.  v ) )
53, 4anbi12d 691 . . . 4  |-  ( u  =  v  ->  (
( x  e.  u  /\  y  e.  u
)  <->  ( x  e.  v  /\  y  e.  v ) ) )
65cbvrexv 2765 . . 3  |-  ( E. u  e.  A  ( x  e.  u  /\  y  e.  u )  <->  E. v  e.  A  ( x  e.  v  /\  y  e.  v )
)
7 eleq1 2343 . . . . 5  |-  ( x  =  z  ->  (
x  e.  v  <->  z  e.  v ) )
8 eleq1 2343 . . . . 5  |-  ( y  =  w  ->  (
y  e.  v  <->  w  e.  v ) )
97, 8bi2anan9 843 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  v  /\  y  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
109rexbidv 2564 . . 3  |-  ( ( x  =  z  /\  y  =  w )  ->  ( E. v  e.  A  ( x  e.  v  /\  y  e.  v )  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
116, 10syl5bb 248 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  ( E. u  e.  A  ( x  e.  u  /\  y  e.  u )  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
12 prtlem13.1 . 2  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
131, 2, 11, 12braba 4282 1  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   {copab 4076
This theorem is referenced by:  prtlem16  26737  prtlem18  26745  prter1  26747  prter3  26750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078
  Copyright terms: Public domain W3C validator