Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem13 Structured version   Unicode version

Theorem prtlem13 26731
Description: Lemma for prter1 26742, prter2 26744, prter3 26745 and prtex 26743. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prtlem13  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
Distinct variable groups:    v, u, x, y, A    w, v, x, y    z, v, x, y
Allowed substitution hints:    A( z, w)    .~ ( x, y, z, w, v, u)

Proof of Theorem prtlem13
StepHypRef Expression
1 vex 2961 . 2  |-  z  e. 
_V
2 vex 2961 . 2  |-  w  e. 
_V
3 elequ2 1731 . . . . 5  |-  ( u  =  v  ->  (
x  e.  u  <->  x  e.  v ) )
4 elequ2 1731 . . . . 5  |-  ( u  =  v  ->  (
y  e.  u  <->  y  e.  v ) )
53, 4anbi12d 693 . . . 4  |-  ( u  =  v  ->  (
( x  e.  u  /\  y  e.  u
)  <->  ( x  e.  v  /\  y  e.  v ) ) )
65cbvrexv 2935 . . 3  |-  ( E. u  e.  A  ( x  e.  u  /\  y  e.  u )  <->  E. v  e.  A  ( x  e.  v  /\  y  e.  v )
)
7 eleq1 2498 . . . . 5  |-  ( x  =  z  ->  (
x  e.  v  <->  z  e.  v ) )
8 eleq1 2498 . . . . 5  |-  ( y  =  w  ->  (
y  e.  v  <->  w  e.  v ) )
97, 8bi2anan9 845 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  v  /\  y  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
109rexbidv 2728 . . 3  |-  ( ( x  =  z  /\  y  =  w )  ->  ( E. v  e.  A  ( x  e.  v  /\  y  e.  v )  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
116, 10syl5bb 250 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  ( E. u  e.  A  ( x  e.  u  /\  y  e.  u )  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
12 prtlem13.1 . 2  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
131, 2, 11, 12braba 4475 1  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1653   E.wrex 2708   class class class wbr 4215   {copab 4268
This theorem is referenced by:  prtlem16  26732  prtlem18  26740  prter1  26742  prter3  26745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270
  Copyright terms: Public domain W3C validator