Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem5 Unicode version

Theorem prtlem5 26722
Description: Lemma for prter1 26747, prter2 26749, prter3 26750 and prtex 26748. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
prtlem5  |-  ( [ s  /  v ] [ r  /  u ] E. x  e.  A  ( u  e.  x  /\  v  e.  x
)  <->  E. x  e.  A  ( r  e.  x  /\  s  e.  x
) )
Distinct variable groups:    v, u, x, r    u, s, v, x    u, A, v, x
Allowed substitution hints:    A( s, r)

Proof of Theorem prtlem5
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ v E. x  e.  A  ( r  e.  x  /\  s  e.  x
)
2 nfv 1605 . . 3  |-  F/ u  v  =  s
3 nfvd 1606 . . 3  |-  ( v  =  s  ->  F/ u E. x  e.  A  ( r  e.  x  /\  s  e.  x
) )
4 elequ1 1687 . . . . . 6  |-  ( u  =  r  ->  (
u  e.  x  <->  r  e.  x ) )
5 elequ1 1687 . . . . . 6  |-  ( v  =  s  ->  (
v  e.  x  <->  s  e.  x ) )
64, 5bi2anan9r 844 . . . . 5  |-  ( ( v  =  s  /\  u  =  r )  ->  ( ( u  e.  x  /\  v  e.  x )  <->  ( r  e.  x  /\  s  e.  x ) ) )
76rexbidv 2564 . . . 4  |-  ( ( v  =  s  /\  u  =  r )  ->  ( E. x  e.  A  ( u  e.  x  /\  v  e.  x )  <->  E. x  e.  A  ( r  e.  x  /\  s  e.  x ) ) )
87ex 423 . . 3  |-  ( v  =  s  ->  (
u  =  r  -> 
( E. x  e.  A  ( u  e.  x  /\  v  e.  x )  <->  E. x  e.  A  ( r  e.  x  /\  s  e.  x ) ) ) )
92, 3, 8sbied 1976 . 2  |-  ( v  =  s  ->  ( [ r  /  u ] E. x  e.  A  ( u  e.  x  /\  v  e.  x
)  <->  E. x  e.  A  ( r  e.  x  /\  s  e.  x
) ) )
101, 9sbie 1978 1  |-  ( [ s  /  v ] [ r  /  u ] E. x  e.  A  ( u  e.  x  /\  v  e.  x
)  <->  E. x  e.  A  ( r  e.  x  /\  s  e.  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623   [wsb 1629    e. wcel 1684   E.wrex 2544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-rex 2549
  Copyright terms: Public domain W3C validator