MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Unicode version

Theorem prub 8618
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2343 . . . . . . 7  |-  ( B  =  C  ->  ( B  e.  A  <->  C  e.  A ) )
21biimpcd 215 . . . . . 6  |-  ( B  e.  A  ->  ( B  =  C  ->  C  e.  A ) )
32adantl 452 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( B  =  C  ->  C  e.  A
) )
4 prcdnq 8617 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
53, 4jaod 369 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( ( B  =  C  \/  C  <Q  B )  ->  C  e.  A ) )
65con3d 125 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
76adantr 451 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
8 elprnq 8615 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  B  e.  Q. )
9 ltsonq 8593 . . . 4  |-  <Q  Or  Q.
10 sotric 4340 . . . 4  |-  ( ( 
<Q  Or  Q.  /\  ( B  e.  Q.  /\  C  e.  Q. ) )  -> 
( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
119, 10mpan 651 . . 3  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
128, 11sylan 457 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
137, 12sylibrd 225 1  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023    Or wor 4313   Q.cnq 8474    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  genpnnp  8629  psslinpr  8655  ltexprlem6  8665  ltexprlem7  8666  prlem936  8671  reclem4pr  8674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-ltpq 8534  df-enq 8535  df-nq 8536  df-ltnq 8542  df-np 8605
  Copyright terms: Public domain W3C validator