Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2b Unicode version

Theorem ps-2b 30293
Description: Variation of projective geometry axiom ps-2 30289. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
ps-2b.l  |-  .<_  =  ( le `  K )
ps-2b.j  |-  .\/  =  ( join `  K )
ps-2b.m  |-  ./\  =  ( meet `  K )
ps-2b.z  |-  .0.  =  ( 0. `  K )
ps-2b.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-2b  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )

Proof of Theorem ps-2b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  HL )
2 simp12 986 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  A )
3 simp13 987 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  A )
4 simp21 988 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  A )
52, 3, 43jca 1132 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )
6 simp22 989 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  e.  A )
7 simp23 990 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  T  e.  A )
86, 7jca 518 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  e.  A  /\  T  e.  A
) )
9 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
10 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  =/=  T )
119, 10jca 518 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T
) )
12 simp33 993 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) )
13 ps-2b.l . . . 4  |-  .<_  =  ( le `  K )
14 ps-2b.j . . . 4  |-  .\/  =  ( join `  K )
15 ps-2b.a . . . 4  |-  A  =  ( Atoms `  K )
1613, 14, 15ps-2 30289 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( ( -.  P  .<_  ( Q  .\/  R
)  /\  S  =/=  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
171, 5, 8, 11, 12, 16syl32anc 1190 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
18 simp111 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
19 hlatl 30172 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
2018, 19syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  AtLat )
21 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
2218, 21syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
23 simp112 1085 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  P  e.  A )
24 simp121 1087 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  R  e.  A )
25 eqid 2296 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2625, 14, 15hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
2718, 23, 24, 26syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
28 simp122 1088 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
29 simp123 1089 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
3025, 14, 15hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
3118, 28, 29, 30syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
32 ps-2b.m . . . . . 6  |-  ./\  =  ( meet `  K )
3325, 32latmcl 14173 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K ) )
3422, 27, 31, 33syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K
) )
35 simp2 956 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  e.  A )
36 simp3 957 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
3725, 15atbase 30101 . . . . . . 7  |-  ( u  e.  A  ->  u  e.  ( Base `  K
) )
3835, 37syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  e.  ( Base `  K ) )
3925, 13, 32latlem12 14200 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( u  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
) )  ->  (
( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) )  <->  u  .<_  ( ( P  .\/  R
)  ./\  ( S  .\/  T ) ) ) )
4022, 38, 27, 31, 39syl13anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( u  .<_  ( P  .\/  R )  /\  u  .<_  ( S 
.\/  T ) )  <-> 
u  .<_  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) ) ) )
4136, 40mpbid 201 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  .<_  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) ) )
42 ps-2b.z . . . . 5  |-  .0.  =  ( 0. `  K )
4325, 13, 42, 15atlen0 30122 . . . 4  |-  ( ( ( K  e.  AtLat  /\  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K
)  /\  u  e.  A )  /\  u  .<_  ( ( P  .\/  R )  ./\  ( S  .\/  T ) ) )  ->  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) )  =/=  .0.  )
4420, 34, 35, 41, 43syl31anc 1185 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )
4544rexlimdv3a 2682 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( E. u  e.  A  ( u  .<_  ( P  .\/  R )  /\  u  .<_  ( S 
.\/  T ) )  ->  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) )  =/=  .0.  )
)
4617, 45mpd 14 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   Atomscatm 30075   AtLatcal 30076   HLchlt 30162
This theorem is referenced by:  ps-2c  30339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator