MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psasym Structured version   Unicode version

Theorem psasym 14635
Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psasym  |-  ( ( R  e.  PosetRel  /\  A R B  /\  B R A )  ->  A  =  B )

Proof of Theorem psasym
StepHypRef Expression
1 pslem 14631 . . 3  |-  ( R  e.  PosetRel  ->  ( ( ( A R B  /\  B R A )  ->  A R A )  /\  ( A  e.  U. U. R  ->  A R A )  /\  ( ( A R B  /\  B R A )  ->  A  =  B )
) )
21simp3d 971 . 2  |-  ( R  e.  PosetRel  ->  ( ( A R B  /\  B R A )  ->  A  =  B ) )
323impib 1151 1  |-  ( ( R  e.  PosetRel  /\  A R B  /\  B R A )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   U.cuni 4008   class class class wbr 4205   PosetRelcps 14617
This theorem is referenced by:  psss  14639  spwmo  14651  ordtt1  17436  ordthauslem  17440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-res 4883  df-ps 14622
  Copyright terms: Public domain W3C validator