MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Unicode version

Theorem psercn 19802
Description: An infinite series converges to a continuous function on the open disk of radius  R, where  R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
Assertion
Ref Expression
psercn  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercn
Dummy variables  k 
s  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 12160 . . . . . 6  |-  sum_ j  e.  NN0  ( ( G `
 y ) `  j )  e.  _V
21rgenw 2610 . . . . 5  |-  A. y  e.  S  sum_ j  e. 
NN0  ( ( G `
 y ) `  j )  e.  _V
3 pserf.f . . . . . 6  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
43fnmpt 5370 . . . . 5  |-  ( A. y  e.  S  sum_ j  e.  NN0  ( ( G `  y ) `
 j )  e. 
_V  ->  F  Fn  S
)
52, 4mp1i 11 . . . 4  |-  ( ph  ->  F  Fn  S )
6 psercn.s . . . . . . . . . . 11  |-  S  =  ( `' abs " (
0 [,) R ) )
7 cnvimass 5033 . . . . . . . . . . . 12  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
8 absf 11821 . . . . . . . . . . . . 13  |-  abs : CC
--> RR
98fdmi 5394 . . . . . . . . . . . 12  |-  dom  abs  =  CC
107, 9sseqtri 3210 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
116, 10eqsstri 3208 . . . . . . . . . 10  |-  S  C_  CC
1211a1i 10 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
1312sselda 3180 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
14 0cn 8831 . . . . . . . . . . 11  |-  0  e.  CC
15 eqid 2283 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1615cnmetdval 18280 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( 0 ( abs 
o.  -  ) a
)  =  ( abs `  ( 0  -  a
) ) )
1714, 13, 16sylancr 644 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  (
0  -  a ) ) )
18 abssub 11810 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( abs `  (
0  -  a ) )  =  ( abs `  ( a  -  0 ) ) )
1914, 13, 18sylancr 644 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( 0  -  a ) )  =  ( abs `  (
a  -  0 ) ) )
2013subid1d 9146 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
a  -  0 )  =  a )
2120fveq2d 5529 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( a  - 
0 ) )  =  ( abs `  a
) )
2217, 19, 213eqtrd 2319 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  a
) )
23 breq2 4027 . . . . . . . . . . 11  |-  ( ( ( ( abs `  a
)  +  R )  /  2 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
24 breq2 4027 . . . . . . . . . . 11  |-  ( ( ( abs `  a
)  +  1 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( abs `  a
)  +  1 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
25 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
2625, 6syl6eleq 2373 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) R ) ) )
27 ffn 5389 . . . . . . . . . . . . . . . . . 18  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
28 elpreima 5645 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) ) )
298, 27, 28mp2b 9 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3026, 29sylib 188 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3130simprd 449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) R
) )
32 0re 8838 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
33 iccssxr 10732 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,]  +oo )  C_  RR*
34 pserf.g . . . . . . . . . . . . . . . . . . 19  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
35 pserf.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A : NN0 --> CC )
36 pserf.r . . . . . . . . . . . . . . . . . . 19  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3734, 35, 36radcnvcl 19793 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  e.  ( 0 [,]  +oo ) )
3837adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,]  +oo ) )
3933, 38sseldi 3178 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
40 elico2 10714 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4132, 39, 40sylancr 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4231, 41mpbid 201 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  RR  /\  0  <_  ( abs `  a
)  /\  ( abs `  a )  <  R
) )
4342simp3d 969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
R )
4443adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
R )
4513abscld 11918 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
46 avglt1 9949 . . . . . . . . . . . . 13  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4745, 46sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4844, 47mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 ) )
4945ltp1d 9687 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  1 ) )
5049adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( abs `  a
)  <  ( ( abs `  a )  +  1 ) )
5123, 24, 48, 50ifbothda 3595 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) ) )
52 psercn.m . . . . . . . . . 10  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
5351, 52syl6breqr 4063 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
5422, 53eqbrtrd 4043 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  <  M )
55 cnxmet 18282 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
5655a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
5714a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  CC )
5834, 3, 35, 36, 6, 52psercnlem1 19801 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
5958simp1d 967 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
6059rpxrd 10391 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
61 elbl 17949 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6256, 57, 60, 61syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6313, 54, 62mpbir2and 888 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
64 fvres 5542 . . . . . . 7  |-  ( a  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  ->  ( ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) `  a
)  =  ( F `
 a ) )
6563, 64syl 15 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  =  ( F `  a ) )
663reseq1i 4951 . . . . . . . . . 10  |-  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( ( y  e.  S  |->  sum_ j  e.  NN0  (
( G `  y
) `  j )
)  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
6734, 3, 35, 36, 6, 58psercnlem2 19800 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
6867simp2d 968 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) ) )
6967simp3d 969 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  S )
7068, 69sstrd 3189 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  S
)
71 resmpt 5000 . . . . . . . . . . 11  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  ->  ( ( y  e.  S  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7270, 71syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7366, 72syl5eq 2327 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
74 eqid 2283 . . . . . . . . . 10  |-  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )
7535adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  A : NN0 --> CC )
76 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( k  =  y  ->  ( G `  k )  =  ( G `  y ) )
7776seqeq3d 11054 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  seq  0 (  +  , 
( G `  k
) )  =  seq  0 (  +  , 
( G `  y
) ) )
7877fveq1d 5527 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  (  seq  0 (  +  , 
( G `  k
) ) `  s
)  =  (  seq  0 (  +  , 
( G `  y
) ) `  s
) )
7978cbvmptv 4111 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq  0
(  +  ,  ( G `  k ) ) `  s ) )  =  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq  0
(  +  ,  ( G `  y ) ) `  s ) )
80 fveq2 5525 . . . . . . . . . . . . 13  |-  ( s  =  i  ->  (  seq  0 (  +  , 
( G `  y
) ) `  s
)  =  (  seq  0 (  +  , 
( G `  y
) ) `  i
) )
8180mpteq2dv 4107 . . . . . . . . . . . 12  |-  ( s  =  i  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq  0 (  +  , 
( G `  y
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq  0 (  +  , 
( G `  y
) ) `  i
) ) )
8279, 81syl5eq 2327 . . . . . . . . . . 11  |-  ( s  =  i  ->  (
k  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq  0 (  +  , 
( G `  k
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq  0 (  +  , 
( G `  y
) ) `  i
) ) )
8382cbvmptv 4111 . . . . . . . . . 10  |-  ( s  e.  NN0  |->  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq  0
(  +  ,  ( G `  k ) ) `  s ) ) )  =  ( i  e.  NN0  |->  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq  0
(  +  ,  ( G `  y ) ) `  i ) ) )
8459rpred 10390 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
8558simp3d 969 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
8634, 74, 75, 36, 83, 84, 85, 68psercn2 19799 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC ) )
8773, 86eqeltrd 2357 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC ) )
88 cncff 18397 . . . . . . . 8  |-  ( ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
8987, 88syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
90 ffvelrn 5663 . . . . . . 7  |-  ( ( ( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC  /\  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  ->  ( ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) `  a
)  e.  CC )
9189, 63, 90syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  e.  CC )
9265, 91eqeltrrd 2358 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F `  a )  e.  CC )
9392ralrimiva 2626 . . . 4  |-  ( ph  ->  A. a  e.  S  ( F `  a )  e.  CC )
94 ffnfv 5685 . . . 4  |-  ( F : S --> CC  <->  ( F  Fn  S  /\  A. a  e.  S  ( F `  a )  e.  CC ) )
955, 93, 94sylanbrc 645 . . 3  |-  ( ph  ->  F : S --> CC )
9670, 11syl6ss 3191 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  CC )
97 ssid 3197 . . . . . . . . 9  |-  CC  C_  CC
98 eqid 2283 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
99 eqid 2283 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
10098cnfldtop 18293 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
10198cnfldtopon 18292 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
102101toponunii 16670 . . . . . . . . . . . . 13  |-  CC  =  U. ( TopOpen ` fld )
103102restid 13338 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
104100, 103ax-mp 8 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
105104eqcomi 2287 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
10698, 99, 105cncfcn 18413 . . . . . . . . 9  |-  ( ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld )
) )
10796, 97, 106sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
10887, 107eleqtrd 2359 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
109102restuni 16893 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC )  -> 
( 0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
110100, 96, 109sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
11163, 110eleqtrd 2359 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )
112 eqid 2283 . . . . . . . 8  |-  U. (
( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
113112cncnpi 17007 . . . . . . 7  |-  ( ( ( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld ) )  /\  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )  ->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
114108, 111, 113syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld ) ) `  a
) )
115100a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( TopOpen
` fld
)  e.  Top )
116 cnex 8818 . . . . . . . . . . 11  |-  CC  e.  _V
117116, 11ssexi 4159 . . . . . . . . . 10  |-  S  e. 
_V
118117a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  S  e.  _V )
119 restabs 16896 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S  /\  S  e.  _V )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
120115, 70, 118, 119syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
121120oveq1d 5873 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
)  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) )
122121fveq1d 5527 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
)  =  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
123114, 122eleqtrrd 2360 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
124 resttop 16891 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V )  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
125100, 117, 124mp2an 653 . . . . . . 7  |-  ( (
TopOpen ` fld )t  S )  e.  Top
126125a1i 10 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( TopOpen ` fld )t  S )  e.  Top )
127 df-ss 3166 . . . . . . . . . 10  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  <->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12870, 127sylib 188 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12998cnfldtopn 18291 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
130129blopn 18046 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
13156, 57, 60, 130syl3anc 1182 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
132 elrestr 13333 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( TopOpen ` fld ) )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
133115, 118, 131, 132syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
134128, 133eqeltrrd 2358 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S ) )
135 isopn3i 16819 . . . . . . . 8  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S
) )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
136125, 134, 135sylancr 644 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
13763, 136eleqtrrd 2360 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
13895adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  F : S --> CC )
139102restuni 16893 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  C_  CC )  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
140100, 11, 139mp2an 653 . . . . . . 7  |-  S  = 
U. ( ( TopOpen ` fld )t  S
)
141140, 102cnprest 17017 . . . . . 6  |-  ( ( ( ( ( TopOpen ` fld )t  S
)  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S )  /\  ( a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  /\  F : S
--> CC ) )  -> 
( F  e.  ( ( ( ( TopOpen ` fld )t  S
)  CnP  ( TopOpen ` fld )
) `  a )  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
142126, 70, 137, 138, 141syl22anc 1183 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
)  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
) `  a )
) )
143123, 142mpbird 223 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
144143ralrimiva 2626 . . 3  |-  ( ph  ->  A. a  e.  S  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
145 resttopon 16892 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
146101, 11, 145mp2an 653 . . . 4  |-  ( (
TopOpen ` fld )t  S )  e.  (TopOn `  S )
147 cncnp 17009 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) ) )
148146, 101, 147mp2an 653 . . 3  |-  ( F  e.  ( ( (
TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
14995, 144, 148sylanbrc 645 . 2  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
150 eqid 2283 . . . 4  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
15198, 150, 105cncfcn 18413 . . 3  |-  ( ( S  C_  CC  /\  CC  C_  CC )  ->  ( S -cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
15211, 97, 151mp2an 653 . 2  |-  ( S
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )
153149, 152syl6eleqr 2374 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ifcif 3565   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   dom cdm 4689    |` cres 4691   "cima 4692    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   NN0cn0 9965   RR+crp 10354   [,)cico 10658   [,]cicc 10659    seq cseq 11046   ^cexp 11104   abscabs 11719    ~~> cli 11958   sum_csu 12158   ↾t crest 13325   TopOpenctopn 13326   * Metcxmt 16369   ballcbl 16371  ℂfldccnfld 16377   Topctop 16631  TopOnctopon 16632   intcnt 16754    Cn ccn 16954    CnP ccnp 16955   -cn->ccncf 18380
This theorem is referenced by:  pserdvlem2  19804  pserdv  19805  abelth  19817  logtayl  20007
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-ntr 16757  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ulm 19756
  Copyright terms: Public domain W3C validator