MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Unicode version

Theorem psercn2 19799
Description: Since by pserulm 19798 the series converges uniformly, it is also continuous by ulmcn 19776. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
pserulm.h  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq  0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
pserulm.m  |-  ( ph  ->  M  e.  RR )
pserulm.l  |-  ( ph  ->  M  <  R )
pserulm.y  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
Assertion
Ref Expression
psercn2  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, n, r, x, y, A    i,
j, y, H    i, M, j, y    x, i, r    i, G, j, r, y    S, i, j, y    ph, i,
j, y
Allowed substitution hints:    ph( x, n, r)    A( i)    R( x, y, i, j, n, r)    S( x, n, r)    F( x, y, i, j, n, r)    G( x, n)    H( x, n, r)    M( x, n, r)

Proof of Theorem psercn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10035 . . 3  |-  0  e.  ZZ
32a1i 10 . 2  |-  ( ph  ->  0  e.  ZZ )
4 pserulm.y . . . . . . 7  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
5 cnvimass 5033 . . . . . . . 8  |-  ( `' abs " ( 0 [,] M ) ) 
C_  dom  abs
6 absf 11821 . . . . . . . . 9  |-  abs : CC
--> RR
76fdmi 5394 . . . . . . . 8  |-  dom  abs  =  CC
85, 7sseqtri 3210 . . . . . . 7  |-  ( `' abs " ( 0 [,] M ) ) 
C_  CC
94, 8syl6ss 3191 . . . . . 6  |-  ( ph  ->  S  C_  CC )
109adantr 451 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  C_  CC )
11 resmpt 5000 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) ) )
1210, 11syl 15 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) ) )
13 simplr 731 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  y  e.  CC )
14 elfznn0 10822 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... i )  ->  k  e.  NN0 )
1514adantl 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  k  e.  NN0 )
16 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1716pserval2 19787 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  y ) `  k
)  =  ( ( A `  k )  x.  ( y ^
k ) ) )
1813, 15, 17syl2anc 642 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( G `
 y ) `  k )  =  ( ( A `  k
)  x.  ( y ^ k ) ) )
19 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
2019, 1syl6eleq 2373 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  ( ZZ>= `  0 )
)
2120adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  i  e.  ( ZZ>= `  0 )
)
22 pserf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A : NN0 --> CC )
2322adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN0 )  ->  A : NN0
--> CC )
24 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2523, 24sylan 457 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2625adantlr 695 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
27 expcl 11121 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( y ^ k
)  e.  CC )
2827adantll 694 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( y ^
k )  e.  CC )
2926, 28mulcld 8855 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
3014, 29sylan2 460 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
3118, 21, 30fsumser 12203 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  sum_ k  e.  ( 0 ... i
) ( ( A `
 k )  x.  ( y ^ k
) )  =  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) )
3231mpteq2dva 4106 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  =  ( y  e.  CC  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) ) )
33 eqid 2283 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3433cnfldtopon 18292 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3534a1i 10 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
36 fzfid 11035 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 0 ... i )  e. 
Fin )
3734a1i 10 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
3823, 14, 24syl2an 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( A `  k )  e.  CC )
3937, 37, 38cnmptc 17356 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( A `  k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4014adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  k  e.  NN0 )
4133expcn 18376 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( y  e.  CC  |->  ( y ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
4240, 41syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( y ^ k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4333mulcn 18371 . . . . . . . . . 10  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
4443a1i 10 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
4537, 39, 42, 44cnmpt12f 17360 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( ( A `  k
)  x.  ( y ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4633, 35, 36, 45fsumcn 18374 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4733cncfcn1 18414 . . . . . . 7  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
4846, 47syl6eleqr 2374 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( CC -cn-> CC ) )
4932, 48eqeltrrd 2358 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  (  seq  0
(  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC
-cn-> CC ) )
50 rescncf 18401 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC -cn-> CC )  ->  ( ( y  e.  CC  |->  (  seq  0 (  +  , 
( G `  y
) ) `  i
) )  |`  S )  e.  ( S -cn-> CC ) ) )
5110, 49, 50sylc 56 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq  0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  e.  ( S -cn-> CC ) )
5212, 51eqeltrrd 2358 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq  0 (  +  , 
( G `  y
) ) `  i
) )  e.  ( S -cn-> CC ) )
53 pserulm.h . . 3  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq  0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
5452, 53fmptd 5684 . 2  |-  ( ph  ->  H : NN0 --> ( S
-cn-> CC ) )
55 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
56 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
57 pserulm.m . . 3  |-  ( ph  ->  M  e.  RR )
58 pserulm.l . . 3  |-  ( ph  ->  M  <  R )
5916, 55, 22, 56, 53, 57, 58, 4pserulm 19798 . 2  |-  ( ph  ->  H ( ~~> u `  S ) F )
601, 3, 54, 59ulmcn 19776 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   dom cdm 4689    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742   RR*cxr 8866    < clt 8867   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   [,]cicc 10659   ...cfz 10782    seq cseq 11046   ^cexp 11104   abscabs 11719    ~~> cli 11958   sum_csu 12158   TopOpenctopn 13326  ℂfldccnfld 16377  TopOnctopon 16632    Cn ccn 16954    tX ctx 17255   -cn->ccncf 18380
This theorem is referenced by:  psercn  19802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ulm 19756
  Copyright terms: Public domain W3C validator