MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Unicode version

Theorem psercnlem2 19816
Description: Lemma for psercn 19818. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercnlem2.i  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
Assertion
Ref Expression
psercnlem2  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercnlem2
Dummy variables  k  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7  |-  S  =  ( `' abs " (
0 [,) R ) )
2 cnvimass 5049 . . . . . . . 8  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
3 absf 11837 . . . . . . . . 9  |-  abs : CC
--> RR
43fdmi 5410 . . . . . . . 8  |-  dom  abs  =  CC
52, 4sseqtri 3223 . . . . . . 7  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
61, 5eqsstri 3221 . . . . . 6  |-  S  C_  CC
76a1i 10 . . . . 5  |-  ( ph  ->  S  C_  CC )
87sselda 3193 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
98abscld 11934 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
108absge0d 11942 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
11 psercnlem2.i . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
1211simp2d 968 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
13 0re 8854 . . . . . 6  |-  0  e.  RR
1411simp1d 967 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
1514rpxrd 10407 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
16 elico2 10730 . . . . . 6  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) M )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  M
) ) )
1713, 15, 16sylancr 644 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) M )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  M
) ) )
189, 10, 12, 17mpbir3and 1135 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) M
) )
19 ffn 5405 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
20 elpreima 5661 . . . . 5  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) M
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) M ) ) ) )
213, 19, 20mp2b 9 . . . 4  |-  ( a  e.  ( `' abs " ( 0 [,) M
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) M ) ) )
228, 18, 21sylanbrc 645 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) M ) ) )
23 eqid 2296 . . . . 5  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2423cnbl0 18299 . . . 4  |-  ( M  e.  RR*  ->  ( `' abs " ( 0 [,) M ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
2515, 24syl 15 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,) M ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
2622, 25eleqtrd 2372 . 2  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
27 df-ico 10678 . . . . 5  |-  [,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <  v ) } )
28 df-icc 10679 . . . . 5  |-  [,]  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <_  v ) } )
29 idd 21 . . . . 5  |-  ( ( 0  e.  RR*  /\  k  e.  RR* )  ->  (
0  <_  k  ->  0  <_  k ) )
30 xrltle 10499 . . . . 5  |-  ( ( k  e.  RR*  /\  M  e.  RR* )  ->  (
k  <  M  ->  k  <_  M ) )
3127, 28, 29, 30ixxssixx 10686 . . . 4  |-  ( 0 [,) M )  C_  ( 0 [,] M
)
32 imass2 5065 . . . 4  |-  ( ( 0 [,) M ) 
C_  ( 0 [,] M )  ->  ( `' abs " ( 0 [,) M ) ) 
C_  ( `' abs " ( 0 [,] M
) ) )
3331, 32mp1i 11 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,) M ) ) 
C_  ( `' abs " ( 0 [,] M
) ) )
3425, 33eqsstr3d 3226 . 2  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) ) )
35 iccssxr 10748 . . . . . 6  |-  ( 0 [,]  +oo )  C_  RR*
36 pserf.g . . . . . . . 8  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
37 pserf.a . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
38 pserf.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3936, 37, 38radcnvcl 19809 . . . . . . 7  |-  ( ph  ->  R  e.  ( 0 [,]  +oo ) )
4039adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,]  +oo ) )
4135, 40sseldi 3191 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
4211simp3d 969 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
43 xrlelttr 10503 . . . . . 6  |-  ( ( z  e.  RR*  /\  M  e.  RR*  /\  R  e. 
RR* )  ->  (
( z  <_  M  /\  M  <  R )  ->  z  <  R
) )
4427, 28, 43ixxss2 10691 . . . . 5  |-  ( ( R  e.  RR*  /\  M  <  R )  ->  (
0 [,] M ) 
C_  ( 0 [,) R ) )
4541, 42, 44syl2anc 642 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
0 [,] M ) 
C_  ( 0 [,) R ) )
46 imass2 5065 . . . 4  |-  ( ( 0 [,] M ) 
C_  ( 0 [,) R )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  ( `' abs " ( 0 [,) R
) ) )
4745, 46syl 15 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  ( `' abs " ( 0 [,) R
) ) )
4847, 1syl6sseqr 3238 . 2  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  S )
4926, 34, 483jca 1132 1  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   "cima 4708    o. ccom 4709    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    +oocpnf 8880   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053   NN0cn0 9981   RR+crp 10370   [,)cico 10674   [,]cicc 10675    seq cseq 11062   ^cexp 11120   abscabs 11735    ~~> cli 11974   sum_csu 12174   ballcbl 16387
This theorem is referenced by:  psercn  19818  pserdvlem2  19820  pserdv  19821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-xadd 10469  df-ico 10678  df-icc 10679  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-xmet 16389  df-met 16390  df-bl 16391
  Copyright terms: Public domain W3C validator