MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Unicode version

Theorem psercnlem2 20332
Description: Lemma for psercn 20334. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercnlem2.i  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
Assertion
Ref Expression
psercnlem2  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercnlem2
Dummy variables  k  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7  |-  S  =  ( `' abs " (
0 [,) R ) )
2 cnvimass 5216 . . . . . . . 8  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
3 absf 12133 . . . . . . . . 9  |-  abs : CC
--> RR
43fdmi 5588 . . . . . . . 8  |-  dom  abs  =  CC
52, 4sseqtri 3372 . . . . . . 7  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
61, 5eqsstri 3370 . . . . . 6  |-  S  C_  CC
76a1i 11 . . . . 5  |-  ( ph  ->  S  C_  CC )
87sselda 3340 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
98abscld 12230 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
108absge0d 12238 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
11 psercnlem2.i . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
1211simp2d 970 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
13 0re 9083 . . . . . 6  |-  0  e.  RR
1411simp1d 969 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
1514rpxrd 10641 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
16 elico2 10966 . . . . . 6  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) M )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  M
) ) )
1713, 15, 16sylancr 645 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) M )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  M
) ) )
189, 10, 12, 17mpbir3and 1137 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) M
) )
19 ffn 5583 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
20 elpreima 5842 . . . . 5  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) M
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) M ) ) ) )
213, 19, 20mp2b 10 . . . 4  |-  ( a  e.  ( `' abs " ( 0 [,) M
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) M ) ) )
228, 18, 21sylanbrc 646 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) M ) ) )
23 eqid 2435 . . . . 5  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2423cnbl0 18800 . . . 4  |-  ( M  e.  RR*  ->  ( `' abs " ( 0 [,) M ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
2515, 24syl 16 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,) M ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
2622, 25eleqtrd 2511 . 2  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
27 df-ico 10914 . . . . 5  |-  [,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <  v ) } )
28 df-icc 10915 . . . . 5  |-  [,]  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <_  v ) } )
29 idd 22 . . . . 5  |-  ( ( 0  e.  RR*  /\  k  e.  RR* )  ->  (
0  <_  k  ->  0  <_  k ) )
30 xrltle 10734 . . . . 5  |-  ( ( k  e.  RR*  /\  M  e.  RR* )  ->  (
k  <  M  ->  k  <_  M ) )
3127, 28, 29, 30ixxssixx 10922 . . . 4  |-  ( 0 [,) M )  C_  ( 0 [,] M
)
32 imass2 5232 . . . 4  |-  ( ( 0 [,) M ) 
C_  ( 0 [,] M )  ->  ( `' abs " ( 0 [,) M ) ) 
C_  ( `' abs " ( 0 [,] M
) ) )
3331, 32mp1i 12 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,) M ) ) 
C_  ( `' abs " ( 0 [,] M
) ) )
3425, 33eqsstr3d 3375 . 2  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) ) )
35 iccssxr 10985 . . . . . 6  |-  ( 0 [,]  +oo )  C_  RR*
36 pserf.g . . . . . . . 8  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
37 pserf.a . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
38 pserf.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3936, 37, 38radcnvcl 20325 . . . . . . 7  |-  ( ph  ->  R  e.  ( 0 [,]  +oo ) )
4039adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,]  +oo ) )
4135, 40sseldi 3338 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
4211simp3d 971 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
43 xrlelttr 10738 . . . . . 6  |-  ( ( z  e.  RR*  /\  M  e.  RR*  /\  R  e. 
RR* )  ->  (
( z  <_  M  /\  M  <  R )  ->  z  <  R
) )
4427, 28, 43ixxss2 10927 . . . . 5  |-  ( ( R  e.  RR*  /\  M  <  R )  ->  (
0 [,] M ) 
C_  ( 0 [,) R ) )
4541, 42, 44syl2anc 643 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
0 [,] M ) 
C_  ( 0 [,) R ) )
46 imass2 5232 . . . 4  |-  ( ( 0 [,] M ) 
C_  ( 0 [,) R )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  ( `' abs " ( 0 [,) R
) ) )
4745, 46syl 16 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  ( `' abs " ( 0 [,) R
) ) )
4847, 1syl6sseqr 3387 . 2  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  S )
4926, 34, 483jca 1134 1  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   dom cdm 4870   "cima 4873    o. ccom 4874    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   supcsup 7437   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283   NN0cn0 10213   RR+crp 10604   [,)cico 10910   [,]cicc 10911    seq cseq 11315   ^cexp 11374   abscabs 12031    ~~> cli 12270   sum_csu 12471   ballcbl 16680
This theorem is referenced by:  psercn  20334  pserdvlem2  20336  pserdv  20337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-xadd 10703  df-ico 10914  df-icc 10915  df-fz 11036  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689
  Copyright terms: Public domain W3C validator