MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Unicode version

Theorem pserdv 20338
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
pserdv.b  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
Assertion
Ref Expression
pserdv  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
Distinct variable groups:    j, a,
k, n, r, x, y, A    j, M, k, y    B, j, k, x, y    j, G, k, r, y    S, a, j, k, y    F, a    ph, a, j, k, y
Allowed substitution hints:    ph( x, n, r)    B( n, r, a)    R( x, y, j, k, n, r, a)    S( x, n, r)    F( x, y, j, k, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 19788 . . . . 5  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
2 ssid 3360 . . . . . . . . 9  |-  CC  C_  CC
32a1i 11 . . . . . . . 8  |-  ( ph  ->  CC  C_  CC )
4 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 pserf.f . . . . . . . . . 10  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
6 pserf.a . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
7 pserf.r . . . . . . . . . 10  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
8 psercn.s . . . . . . . . . 10  |-  S  =  ( `' abs " (
0 [,) R ) )
9 psercn.m . . . . . . . . . 10  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
104, 5, 6, 7, 8, 9psercn 20335 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
11 cncff 18916 . . . . . . . . 9  |-  ( F  e.  ( S -cn-> CC )  ->  F : S
--> CC )
1210, 11syl 16 . . . . . . . 8  |-  ( ph  ->  F : S --> CC )
13 cnvimass 5217 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
14 absf 12134 . . . . . . . . . . . 12  |-  abs : CC
--> RR
1514fdmi 5589 . . . . . . . . . . 11  |-  dom  abs  =  CC
1613, 15sseqtri 3373 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
178, 16eqsstri 3371 . . . . . . . . 9  |-  S  C_  CC
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
193, 12, 18dvbss 19781 . . . . . . 7  |-  ( ph  ->  dom  ( CC  _D  F )  C_  S
)
202a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  CC  C_  CC )
2112adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  F : S --> CC )
2217a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  S  C_  CC )
23 pserdv.b . . . . . . . . . . . . . 14  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
24 cnxmet 18800 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
2524a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
26 0cn 9077 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
2726a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  CC )
2818sselda 3341 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
2928abscld 12231 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
304, 5, 6, 7, 8, 9psercnlem1 20334 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
3130simp1d 969 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
3231rpred 10641 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
3329, 32readdcld 9108 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR )
34 0re 9084 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
3534a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  RR )
3628absge0d 12239 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
3729, 31ltaddrpd 10670 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  M ) )
3835, 29, 33, 36, 37lelttrd 9221 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  0  <  ( ( abs `  a
)  +  M ) )
3933, 38elrpd 10639 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR+ )
4039rphalfcld 10653 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e.  RR+ )
4140rpxrd 10642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e. 
RR* )
42 blssm 18441 . . . . . . . . . . . . . . 15  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  (
( ( abs `  a
)  +  M )  /  2 )  e. 
RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  CC )
4325, 27, 41, 42syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  CC )
4423, 43syl5eqss 3385 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  B  C_  CC )
45 eqid 2436 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4645cnfldtop 18811 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  Top
4745cnfldtopon 18810 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4847toponunii 16990 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. ( TopOpen ` fld )
4948restid 13654 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
5046, 49ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
5150eqcomi 2440 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
5245, 51dvres 19791 . . . . . . . . . . . . 13  |-  ( ( ( CC  C_  CC  /\  F : S --> CC )  /\  ( S  C_  CC  /\  B  C_  CC ) )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
5320, 21, 22, 44, 52syl22anc 1185 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
54 resss 5163 . . . . . . . . . . . 12  |-  ( ( CC  _D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) )  C_  ( CC  _D  F )
5553, 54syl6eqss 3391 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
) )
56 dmss 5062 . . . . . . . . . . 11  |-  ( ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
)  ->  dom  ( CC 
_D  ( F  |`  B ) )  C_  dom  ( CC  _D  F
) )
5755, 56syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) ) 
C_  dom  ( CC  _D  F ) )
584, 5, 6, 7, 8, 9pserdvlem1 20336 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( abs `  a )  +  M
)  /  2 )  e.  RR+  /\  ( abs `  a )  < 
( ( ( abs `  a )  +  M
)  /  2 )  /\  ( ( ( abs `  a )  +  M )  / 
2 )  <  R
) )
594, 5, 6, 7, 8, 58psercnlem2 20333 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  /\  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  ( `' abs " ( 0 [,] ( ( ( abs `  a )  +  M
)  /  2 ) ) )  /\  ( `' abs " ( 0 [,] ( ( ( abs `  a )  +  M )  / 
2 ) ) ) 
C_  S ) )
6059simp1d 969 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) ) )
6160, 23syl6eleqr 2527 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  B )
624, 5, 6, 7, 8, 9, 23pserdvlem2 20337 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  =  ( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) )
6362dmeqd 5065 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  dom  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
64 dmmptg 5360 . . . . . . . . . . . . 13  |-  ( A. y  e.  B  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( y ^
k ) )  e. 
_V  ->  dom  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )  =  B )
65 sumex 12474 . . . . . . . . . . . . . 14  |-  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  e.  _V
6665a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  B  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  e.  _V )
6764, 66mprg 2768 . . . . . . . . . . . 12  |-  dom  (
y  e.  B  |->  sum_ k  e.  NN0  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k ) ) )  =  B
6863, 67syl6eq 2484 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
6961, 68eleqtrrd 2513 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  dom  ( CC  _D  ( F  |`  B ) ) )
7057, 69sseldd 3342 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  dom  ( CC  _D  F ) )
7170ex 424 . . . . . . . 8  |-  ( ph  ->  ( a  e.  S  ->  a  e.  dom  ( CC  _D  F ) ) )
7271ssrdv 3347 . . . . . . 7  |-  ( ph  ->  S  C_  dom  ( CC 
_D  F ) )
7319, 72eqssd 3358 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  =  S )
7473feq2d 5574 . . . . 5  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : S --> CC ) )
751, 74mpbii 203 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : S --> CC )
7675feqmptd 5772 . . 3  |-  ( ph  ->  ( CC  _D  F
)  =  ( a  e.  S  |->  ( ( CC  _D  F ) `
 a ) ) )
77 ffun 5586 . . . . . . 7  |-  ( ( CC  _D  F ) : dom  ( CC 
_D  F ) --> CC 
->  Fun  ( CC  _D  F ) )
781, 77mp1i 12 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  Fun  ( CC  _D  F
) )
79 funssfv 5739 . . . . . 6  |-  ( ( Fun  ( CC  _D  F )  /\  ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
)  /\  a  e.  dom  ( CC  _D  ( F  |`  B ) ) )  ->  ( ( CC  _D  F ) `  a )  =  ( ( CC  _D  ( F  |`  B ) ) `
 a ) )
8078, 55, 69, 79syl3anc 1184 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  F
) `  a )  =  ( ( CC 
_D  ( F  |`  B ) ) `  a ) )
8162fveq1d 5723 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  ( F  |`  B ) ) `
 a )  =  ( ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
) )
82 oveq1 6081 . . . . . . . . 9  |-  ( y  =  a  ->  (
y ^ k )  =  ( a ^
k ) )
8382oveq2d 6090 . . . . . . . 8  |-  ( y  =  a  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8483sumeq2sdv 12491 . . . . . . 7  |-  ( y  =  a  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( a ^
k ) ) )
85 eqid 2436 . . . . . . 7  |-  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )  =  ( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) )
86 sumex 12474 . . . . . . 7  |-  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) )  e.  _V
8784, 85, 86fvmpt 5799 . . . . . 6  |-  ( a  e.  B  ->  (
( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
)  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8861, 87syl 16 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
)  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8980, 81, 883eqtrd 2472 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  F
) `  a )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
a ^ k ) ) )
9089mpteq2dva 4288 . . 3  |-  ( ph  ->  ( a  e.  S  |->  ( ( CC  _D  F ) `  a
) )  =  ( a  e.  S  |->  sum_ k  e.  NN0  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k ) ) ) )
9176, 90eqtrd 2468 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( a  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) ) )
92 oveq1 6081 . . . . 5  |-  ( a  =  y  ->  (
a ^ k )  =  ( y ^
k ) )
9392oveq2d 6090 . . . 4  |-  ( a  =  y  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )
9493sumeq2sdv 12491 . . 3  |-  ( a  =  y  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( y ^
k ) ) )
9594cbvmptv 4293 . 2  |-  ( a  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )  =  ( y  e.  S  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) )
9691, 95syl6eq 2484 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2702   _Vcvv 2949    C_ wss 3313   ifcif 3732   class class class wbr 4205    e. cmpt 4259   `'ccnv 4870   dom cdm 4871    |` cres 4873   "cima 4874    o. ccom 4875   Fun wfun 5441   -->wf 5443   ` cfv 5447  (class class class)co 6074   supcsup 7438   CCcc 8981   RRcr 8982   0cc0 8983   1c1 8984    + caddc 8986    x. cmul 8988   RR*cxr 9112    < clt 9113    - cmin 9284    / cdiv 9670   2c2 10042   NN0cn0 10214   RR+crp 10605   [,)cico 10911   [,]cicc 10912    seq cseq 11316   ^cexp 11375   abscabs 12032    ~~> cli 12271   sum_csu 12472   ↾t crest 13641   TopOpenctopn 13642   * Metcxmt 16679   ballcbl 16681  ℂfldccnfld 16696   Topctop 16951   intcnt 17074   -cn->ccncf 18899    _D cdv 19743
This theorem is referenced by:  pserdv2  20339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-hash 11612  df-shft 11875  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-limsup 12258  df-clim 12275  df-rlim 12276  df-sum 12473  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-fbas 16692  df-fg 16693  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cld 17076  df-ntr 17077  df-cls 17078  df-nei 17155  df-lp 17193  df-perf 17194  df-cn 17284  df-cnp 17285  df-haus 17372  df-cmp 17443  df-tx 17587  df-hmeo 17780  df-fil 17871  df-fm 17963  df-flim 17964  df-flf 17965  df-xms 18343  df-ms 18344  df-tms 18345  df-cncf 18901  df-limc 19746  df-dv 19747  df-ulm 20286
  Copyright terms: Public domain W3C validator