MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv2 Unicode version

Theorem pserdv2 20215
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
pserdv.b  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
Assertion
Ref Expression
pserdv2  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) ) ) )
Distinct variable groups:    j, a,
k, n, r, x, y, A    j, M, k, y    B, j, k, x, y    j, G, k, r, y    S, a, j, k, y    F, a    ph, a, j, k, y
Allowed substitution hints:    ph( x, n, r)    B( n, r, a)    R( x, y, j, k, n, r, a)    S( x, n, r)    F( x, y, j, k, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem pserdv2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 pserf.g . . 3  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
2 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
3 pserf.a . . 3  |-  ( ph  ->  A : NN0 --> CC )
4 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
5 psercn.s . . 3  |-  S  =  ( `' abs " (
0 [,) R ) )
6 psercn.m . . 3  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
7 pserdv.b . . 3  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
81, 2, 3, 4, 5, 6, 7pserdv 20214 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( y ^ m
) ) ) )
9 nn0uz 10454 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
10 nnuz 10455 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
11 1e0p1 10344 . . . . . . 7  |-  1  =  ( 0  +  1 )
1211fveq2i 5673 . . . . . 6  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  ( 0  +  1 ) )
1310, 12eqtri 2409 . . . . 5  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
14 id 20 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  k  =  ( 1  +  m ) )
15 fveq2 5670 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  ( A `  k )  =  ( A `  ( 1  +  m
) ) )
1614, 15oveq12d 6040 . . . . . 6  |-  ( k  =  ( 1  +  m )  ->  (
k  x.  ( A `
 k ) )  =  ( ( 1  +  m )  x.  ( A `  (
1  +  m ) ) ) )
17 oveq1 6029 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  (
k  -  1 )  =  ( ( 1  +  m )  - 
1 ) )
1817oveq2d 6038 . . . . . 6  |-  ( k  =  ( 1  +  m )  ->  (
y ^ ( k  -  1 ) )  =  ( y ^
( ( 1  +  m )  -  1 ) ) )
1916, 18oveq12d 6040 . . . . 5  |-  ( k  =  ( 1  +  m )  ->  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) )  =  ( ( ( 1  +  m )  x.  ( A `  ( 1  +  m
) ) )  x.  ( y ^ (
( 1  +  m
)  -  1 ) ) ) )
20 1z 10245 . . . . . 6  |-  1  e.  ZZ
2120a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  1  e.  ZZ )
22 0z 10227 . . . . . 6  |-  0  e.  ZZ
2322a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  0  e.  ZZ )
24 nncn 9942 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
2524adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  k  e.  CC )
263adantr 452 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  A : NN0 --> CC )
27 nnnn0 10162 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
28 ffvelrn 5809 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2926, 27, 28syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  ( A `  k )  e.  CC )
3025, 29mulcld 9043 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
k  x.  ( A `
 k ) )  e.  CC )
31 cnvimass 5166 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
32 absf 12070 . . . . . . . . . . . 12  |-  abs : CC
--> RR
3332fdmi 5538 . . . . . . . . . . 11  |-  dom  abs  =  CC
3431, 33sseqtri 3325 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
355, 34eqsstri 3323 . . . . . . . . 9  |-  S  C_  CC
3635a1i 11 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
3736sselda 3293 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
38 nnm1nn0 10195 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
39 expcl 11328 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( k  -  1 )  e.  NN0 )  ->  ( y ^ (
k  -  1 ) )  e.  CC )
4037, 38, 39syl2an 464 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
y ^ ( k  -  1 ) )  e.  CC )
4130, 40mulcld 9043 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) )  e.  CC )
429, 13, 19, 21, 23, 41isumshft 12548 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) )  =  sum_ m  e.  NN0  ( (
( 1  +  m
)  x.  ( A `
 ( 1  +  m ) ) )  x.  ( y ^
( ( 1  +  m )  -  1 ) ) ) )
43 ax-1cn 8983 . . . . . . . 8  |-  1  e.  CC
44 nn0cn 10165 . . . . . . . . 9  |-  ( m  e.  NN0  ->  m  e.  CC )
4544adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  m  e.  CC )
46 addcom 9186 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  m  e.  CC )  ->  ( 1  +  m
)  =  ( m  +  1 ) )
4743, 45, 46sylancr 645 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
1  +  m )  =  ( m  + 
1 ) )
4847fveq2d 5674 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  ( A `  ( 1  +  m ) )  =  ( A `  (
m  +  1 ) ) )
4947, 48oveq12d 6040 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( 1  +  m
)  x.  ( A `
 ( 1  +  m ) ) )  =  ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) ) )
50 pncan2 9246 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  m  e.  CC )  ->  ( ( 1  +  m )  -  1 )  =  m )
5143, 45, 50sylancr 645 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( 1  +  m
)  -  1 )  =  m )
5251oveq2d 6038 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
y ^ ( ( 1  +  m )  -  1 ) )  =  ( y ^
m ) )
5349, 52oveq12d 6040 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( ( 1  +  m )  x.  ( A `  ( 1  +  m ) ) )  x.  ( y ^
( ( 1  +  m )  -  1 ) ) )  =  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  (
y ^ m ) ) )
5453sumeq2dv 12426 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  sum_ m  e.  NN0  ( ( ( 1  +  m )  x.  ( A `  ( 1  +  m
) ) )  x.  ( y ^ (
( 1  +  m
)  -  1 ) ) )  =  sum_ m  e.  NN0  ( (
( m  +  1 )  x.  ( A `
 ( m  + 
1 ) ) )  x.  ( y ^
m ) ) )
5542, 54eqtr2d 2422 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( y ^ m
) )  =  sum_ k  e.  NN  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) ) )
5655mpteq2dva 4238 . 2  |-  ( ph  ->  ( y  e.  S  |-> 
sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  (
y ^ m ) ) )  =  ( y  e.  S  |->  sum_ k  e.  NN  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) ) ) )
578, 56eqtrd 2421 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2655    C_ wss 3265   ifcif 3684    e. cmpt 4209   `'ccnv 4819   dom cdm 4820   "cima 4823    o. ccom 4824   -->wf 5392   ` cfv 5396  (class class class)co 6022   supcsup 7382   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926    + caddc 8928    x. cmul 8930   RR*cxr 9054    < clt 9055    - cmin 9225    / cdiv 9611   NNcn 9934   2c2 9983   NN0cn0 10155   ZZcz 10216   ZZ>=cuz 10422   [,)cico 10852    seq cseq 11252   ^cexp 11311   abscabs 11968    ~~> cli 12207   sum_csu 12408   ballcbl 16616    _D cdv 19619
This theorem is referenced by:  logtayl  20420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-seq 11253  df-exp 11312  df-hash 11548  df-shft 11811  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-limsup 12194  df-clim 12211  df-rlim 12212  df-sum 12409  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lp 17125  df-perf 17126  df-cn 17215  df-cnp 17216  df-haus 17303  df-cmp 17374  df-tx 17517  df-hmeo 17710  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-tms 18263  df-cncf 18781  df-limc 19622  df-dv 19623  df-ulm 20162
  Copyright terms: Public domain W3C validator