MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psergf Unicode version

Theorem psergf 19788
Description: The sequence of terms in the infinite sequence defining a power series for fixed  X. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
psergf.x  |-  ( ph  ->  X  e.  CC )
Assertion
Ref Expression
psergf  |-  ( ph  ->  ( G `  X
) : NN0 --> CC )
Distinct variable group:    x, n, A
Allowed substitution hints:    ph( x, n)    G( x, n)    X( x, n)

Proof of Theorem psergf
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 radcnv.a . 2  |-  ( ph  ->  A : NN0 --> CC )
2 psergf.x . 2  |-  ( ph  ->  X  e.  CC )
3 ffvelrn 5663 . . . . . 6  |-  ( ( A : NN0 --> CC  /\  m  e.  NN0 )  -> 
( A `  m
)  e.  CC )
43adantlr 695 . . . . 5  |-  ( ( ( A : NN0 --> CC 
/\  X  e.  CC )  /\  m  e.  NN0 )  ->  ( A `  m )  e.  CC )
5 expcl 11121 . . . . . 6  |-  ( ( X  e.  CC  /\  m  e.  NN0 )  -> 
( X ^ m
)  e.  CC )
65adantll 694 . . . . 5  |-  ( ( ( A : NN0 --> CC 
/\  X  e.  CC )  /\  m  e.  NN0 )  ->  ( X ^
m )  e.  CC )
74, 6mulcld 8855 . . . 4  |-  ( ( ( A : NN0 --> CC 
/\  X  e.  CC )  /\  m  e.  NN0 )  ->  ( ( A `
 m )  x.  ( X ^ m
) )  e.  CC )
8 eqid 2283 . . . 4  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) )
97, 8fmptd 5684 . . 3  |-  ( ( A : NN0 --> CC  /\  X  e.  CC )  ->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^ m ) ) ) : NN0 --> CC )
10 pser.g . . . . . 6  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1110pserval 19786 . . . . 5  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
1211adantl 452 . . . 4  |-  ( ( A : NN0 --> CC  /\  X  e.  CC )  ->  ( G `  X
)  =  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) ) )
1312feq1d 5379 . . 3  |-  ( ( A : NN0 --> CC  /\  X  e.  CC )  ->  ( ( G `  X ) : NN0 --> CC  <->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) ) : NN0 --> CC ) )
149, 13mpbird 223 . 2  |-  ( ( A : NN0 --> CC  /\  X  e.  CC )  ->  ( G `  X
) : NN0 --> CC )
151, 2, 14syl2anc 642 1  |-  ( ph  ->  ( G `  X
) : NN0 --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735    x. cmul 8742   NN0cn0 9965   ^cexp 11104
This theorem is referenced by:  radcnvlem1  19789  radcnvlem2  19790  radcnvlem3  19791  radcnv0  19792  radcnvlt2  19795  dvradcnv  19797  pserulm  19798  pserdvlem2  19804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator