MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Unicode version

Theorem pserval 19786
Description: Value of the function  G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
Assertion
Ref Expression
pserval  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Distinct variable groups:    m, n, x, A    m, X    m, G
Allowed substitution hints:    G( x, n)    X( x, n)

Proof of Theorem pserval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . 4  |-  ( y  =  X  ->  (
y ^ m )  =  ( X ^
m ) )
21oveq2d 5874 . . 3  |-  ( y  =  X  ->  (
( A `  m
)  x.  ( y ^ m ) )  =  ( ( A `
 m )  x.  ( X ^ m
) ) )
32mpteq2dv 4107 . 2  |-  ( y  =  X  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
4 pser.g . . 3  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 fveq2 5525 . . . . . . 7  |-  ( n  =  m  ->  ( A `  n )  =  ( A `  m ) )
6 oveq2 5866 . . . . . . 7  |-  ( n  =  m  ->  (
x ^ n )  =  ( x ^
m ) )
75, 6oveq12d 5876 . . . . . 6  |-  ( n  =  m  ->  (
( A `  n
)  x.  ( x ^ n ) )  =  ( ( A `
 m )  x.  ( x ^ m
) ) )
87cbvmptv 4111 . . . . 5  |-  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
9 oveq1 5865 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ m )  =  ( y ^
m ) )
109oveq2d 5874 . . . . . 6  |-  ( x  =  y  ->  (
( A `  m
)  x.  ( x ^ m ) )  =  ( ( A `
 m )  x.  ( y ^ m
) ) )
1110mpteq2dv 4107 . . . . 5  |-  ( x  =  y  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
128, 11syl5eq 2327 . . . 4  |-  ( x  =  y  ->  (
n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
1312cbvmptv 4111 . . 3  |-  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) ) )  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) ) )
144, 13eqtri 2303 . 2  |-  G  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  (
y ^ m ) ) ) )
15 nn0ex 9971 . . 3  |-  NN0  e.  _V
1615mptex 5746 . 2  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) )  e.  _V
173, 14, 16fvmpt 5602 1  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735    x. cmul 8742   NN0cn0 9965   ^cexp 11104
This theorem is referenced by:  pserval2  19787  psergf  19788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-nn 9747  df-n0 9966
  Copyright terms: Public domain W3C validator