Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgneu Unicode version

Theorem psgneu 27429
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g  |-  G  =  ( SymGrp `  D )
psgnval.t  |-  T  =  ran  (pmTrsp `  D
)
psgnval.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgneu  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Distinct variable groups:    w, s, G    N, s, w    P, s, w    T, s, w    D, s, w

Proof of Theorem psgneu
Dummy variables  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9  |-  G  =  ( SymGrp `  D )
2 psgnval.n . . . . . . . . 9  |-  N  =  (pmSgn `  D )
3 eqid 2283 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
41, 2, 3psgneldm 27426 . . . . . . . 8  |-  ( P  e.  dom  N  <->  ( P  e.  ( Base `  G
)  /\  dom  ( P 
\  _I  )  e. 
Fin ) )
54simplbi 446 . . . . . . 7  |-  ( P  e.  dom  N  ->  P  e.  ( Base `  G ) )
61, 3elbasfv 13191 . . . . . . 7  |-  ( P  e.  ( Base `  G
)  ->  D  e.  _V )
75, 6syl 15 . . . . . 6  |-  ( P  e.  dom  N  ->  D  e.  _V )
8 psgnval.t . . . . . . 7  |-  T  =  ran  (pmTrsp `  D
)
91, 8, 2psgneldm2 27427 . . . . . 6  |-  ( D  e.  _V  ->  ( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
107, 9syl 15 . . . . 5  |-  ( P  e.  dom  N  -> 
( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
1110ibi 232 . . . 4  |-  ( P  e.  dom  N  ->  E. w  e. Word  T P  =  ( G  gsumg  w ) )
12 simpr 447 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  P  =  ( G  gsumg  w ) )
13 eqid 2283 . . . . . . 7  |-  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) )
14 ovex 5883 . . . . . . . 8  |-  ( -u
1 ^ ( # `  w ) )  e. 
_V
15 eqeq1 2289 . . . . . . . . 9  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
1615anbi2d 684 . . . . . . . 8  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
1714, 16spcev 2875 . . . . . . 7  |-  ( ( P  =  ( G 
gsumg  w )  /\  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1812, 13, 17sylancl 643 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1918ex 423 . . . . 5  |-  ( ( P  e.  dom  N  /\  w  e. Word  T )  ->  ( P  =  ( G  gsumg  w )  ->  E. s
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2019reximdva 2655 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T P  =  ( G  gsumg  w )  ->  E. w  e. Word  T E. s ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2111, 20mpd 14 . . 3  |-  ( P  e.  dom  N  ->  E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
22 rexcom4 2807 . . 3  |-  ( E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. s E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
2321, 22sylib 188 . 2  |-  ( P  e.  dom  N  ->  E. s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
24 reeanv 2707 . . . 4  |-  ( E. w  e. Word  T E. x  e. Word  T (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  <-> 
( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
257ad2antrr 706 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  D  e.  _V )
26 simplrl 736 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  w  e. Word  T )
27 simplrr 737 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  x  e. Word  T )
28 simprll 738 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  w ) )
29 simprrl 740 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  x ) )
3028, 29eqtr3d 2317 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( G  gsumg  w )  =  ( G 
gsumg  x ) )
311, 8, 25, 26, 27, 30psgnuni 27422 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 x ) ) )
32 simprlr 739 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  ( -u 1 ^ ( # `
 w ) ) )
33 simprrr 741 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  t  =  ( -u 1 ^ ( # `
 x ) ) )
3431, 32, 333eqtr4d 2325 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  t )
3534ex 423 . . . . 5  |-  ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T ) )  ->  ( (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3635rexlimdvva 2674 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T E. x  e. Word  T
( ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3724, 36syl5bir 209 . . 3  |-  ( P  e.  dom  N  -> 
( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3837alrimivv 1618 . 2  |-  ( P  e.  dom  N  ->  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
39 eqeq1 2289 . . . . . 6  |-  ( s  =  t  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 w ) ) ) )
4039anbi2d 684 . . . . 5  |-  ( s  =  t  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  t  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
4140rexbidv 2564 . . . 4  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) ) ) )
42 oveq2 5866 . . . . . . 7  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
4342eqeq2d 2294 . . . . . 6  |-  ( w  =  x  ->  ( P  =  ( G  gsumg  w )  <->  P  =  ( G  gsumg  x ) ) )
44 fveq2 5525 . . . . . . . 8  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
4544oveq2d 5874 . . . . . . 7  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
4645eqeq2d 2294 . . . . . 6  |-  ( w  =  x  ->  (
t  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 x ) ) ) )
4743, 46anbi12d 691 . . . . 5  |-  ( w  =  x  ->  (
( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  x )  /\  t  =  (
-u 1 ^ ( # `
 x ) ) ) ) )
4847cbvrexv 2765 . . . 4  |-  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )
4941, 48syl6bb 252 . . 3  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
5049eu4 2182 . 2  |-  ( E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( E. s E. w  e. Word  T
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) ) )
5123, 38, 50sylanbrc 645 1  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   E!weu 2143   E.wrex 2544   _Vcvv 2788    \ cdif 3149    _I cid 4304   dom cdm 4689   ran crn 4690   ` cfv 5255  (class class class)co 5858   Fincfn 6863   1c1 8738   -ucneg 9038   ^cexp 11104   #chash 11337  Word cword 11403   Basecbs 13148    gsumg cgsu 13401   SymGrpcsymg 14769  pmTrspcpmtr 27384  pmSgncpsgn 27414
This theorem is referenced by:  psgnvali  27431  psgnvalii  27432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-reverse 11414  df-s2 11498  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-tset 13227  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-subg 14618  df-ghm 14681  df-gim 14723  df-symg 14770  df-oppg 14819  df-pmtr 27385  df-psgn 27415
  Copyright terms: Public domain W3C validator