Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgneu Unicode version

Theorem psgneu 27301
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g  |-  G  =  ( SymGrp `  D )
psgnval.t  |-  T  =  ran  (pmTrsp `  D
)
psgnval.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgneu  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Distinct variable groups:    w, s, G    N, s, w    P, s, w    T, s, w    D, s, w

Proof of Theorem psgneu
Dummy variables  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9  |-  G  =  ( SymGrp `  D )
2 psgnval.n . . . . . . . . 9  |-  N  =  (pmSgn `  D )
3 eqid 2408 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
41, 2, 3psgneldm 27298 . . . . . . . 8  |-  ( P  e.  dom  N  <->  ( P  e.  ( Base `  G
)  /\  dom  ( P 
\  _I  )  e. 
Fin ) )
54simplbi 447 . . . . . . 7  |-  ( P  e.  dom  N  ->  P  e.  ( Base `  G ) )
61, 3elbasfv 13471 . . . . . . 7  |-  ( P  e.  ( Base `  G
)  ->  D  e.  _V )
75, 6syl 16 . . . . . 6  |-  ( P  e.  dom  N  ->  D  e.  _V )
8 psgnval.t . . . . . . 7  |-  T  =  ran  (pmTrsp `  D
)
91, 8, 2psgneldm2 27299 . . . . . 6  |-  ( D  e.  _V  ->  ( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
107, 9syl 16 . . . . 5  |-  ( P  e.  dom  N  -> 
( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
1110ibi 233 . . . 4  |-  ( P  e.  dom  N  ->  E. w  e. Word  T P  =  ( G  gsumg  w ) )
12 simpr 448 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  P  =  ( G  gsumg  w ) )
13 eqid 2408 . . . . . . 7  |-  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) )
14 ovex 6069 . . . . . . . 8  |-  ( -u
1 ^ ( # `  w ) )  e. 
_V
15 eqeq1 2414 . . . . . . . . 9  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
1615anbi2d 685 . . . . . . . 8  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
1714, 16spcev 3007 . . . . . . 7  |-  ( ( P  =  ( G 
gsumg  w )  /\  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1812, 13, 17sylancl 644 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1918ex 424 . . . . 5  |-  ( ( P  e.  dom  N  /\  w  e. Word  T )  ->  ( P  =  ( G  gsumg  w )  ->  E. s
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2019reximdva 2782 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T P  =  ( G  gsumg  w )  ->  E. w  e. Word  T E. s ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2111, 20mpd 15 . . 3  |-  ( P  e.  dom  N  ->  E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
22 rexcom4 2939 . . 3  |-  ( E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. s E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
2321, 22sylib 189 . 2  |-  ( P  e.  dom  N  ->  E. s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
24 reeanv 2839 . . . 4  |-  ( E. w  e. Word  T E. x  e. Word  T (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  <-> 
( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
257ad2antrr 707 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  D  e.  _V )
26 simplrl 737 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  w  e. Word  T )
27 simplrr 738 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  x  e. Word  T )
28 simprll 739 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  w ) )
29 simprrl 741 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  x ) )
3028, 29eqtr3d 2442 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( G  gsumg  w )  =  ( G 
gsumg  x ) )
311, 8, 25, 26, 27, 30psgnuni 27294 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 x ) ) )
32 simprlr 740 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  ( -u 1 ^ ( # `
 w ) ) )
33 simprrr 742 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  t  =  ( -u 1 ^ ( # `
 x ) ) )
3431, 32, 333eqtr4d 2450 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  t )
3534ex 424 . . . . 5  |-  ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T ) )  ->  ( (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3635rexlimdvva 2801 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T E. x  e. Word  T
( ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3724, 36syl5bir 210 . . 3  |-  ( P  e.  dom  N  -> 
( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3837alrimivv 1639 . 2  |-  ( P  e.  dom  N  ->  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
39 eqeq1 2414 . . . . . 6  |-  ( s  =  t  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 w ) ) ) )
4039anbi2d 685 . . . . 5  |-  ( s  =  t  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  t  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
4140rexbidv 2691 . . . 4  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) ) ) )
42 oveq2 6052 . . . . . . 7  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
4342eqeq2d 2419 . . . . . 6  |-  ( w  =  x  ->  ( P  =  ( G  gsumg  w )  <->  P  =  ( G  gsumg  x ) ) )
44 fveq2 5691 . . . . . . . 8  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
4544oveq2d 6060 . . . . . . 7  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
4645eqeq2d 2419 . . . . . 6  |-  ( w  =  x  ->  (
t  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 x ) ) ) )
4743, 46anbi12d 692 . . . . 5  |-  ( w  =  x  ->  (
( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  x )  /\  t  =  (
-u 1 ^ ( # `
 x ) ) ) ) )
4847cbvrexv 2897 . . . 4  |-  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )
4941, 48syl6bb 253 . . 3  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
5049eu4 2297 . 2  |-  ( E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( E. s E. w  e. Word  T
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) ) )
5123, 38, 50sylanbrc 646 1  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2258   E.wrex 2671   _Vcvv 2920    \ cdif 3281    _I cid 4457   dom cdm 4841   ran crn 4842   ` cfv 5417  (class class class)co 6044   Fincfn 7072   1c1 8951   -ucneg 9252   ^cexp 11341   #chash 11577  Word cword 11676   Basecbs 13428    gsumg cgsu 13683   SymGrpcsymg 15051  pmTrspcpmtr 27256  pmSgncpsgn 27286
This theorem is referenced by:  psgnvali  27303  psgnvalii  27304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-xor 1311  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-ot 3788  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-tpos 6442  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-card 7786  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-fz 11004  df-fzo 11095  df-seq 11283  df-exp 11342  df-hash 11578  df-word 11682  df-concat 11683  df-s1 11684  df-substr 11685  df-splice 11686  df-reverse 11687  df-s2 11771  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-tset 13507  df-0g 13686  df-gsum 13687  df-mre 13770  df-mrc 13771  df-acs 13773  df-mnd 14649  df-mhm 14697  df-submnd 14698  df-grp 14771  df-minusg 14772  df-subg 14900  df-ghm 14963  df-gim 15005  df-symg 15052  df-oppg 15101  df-pmtr 27257  df-psgn 27287
  Copyright terms: Public domain W3C validator