Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnfval Unicode version

Theorem psgnfval 27526
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g  |-  G  =  ( SymGrp `  D )
psgnfval.b  |-  B  =  ( Base `  G
)
psgnfval.f  |-  F  =  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }
psgnfval.t  |-  T  =  ran  (pmTrsp `  D
)
psgnfval.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgnfval  |-  N  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
Distinct variable groups:    s, p, w, x    D, s, w, x    x, F    w, T    B, p
Allowed substitution hints:    B( x, w, s)    D( p)    T( x, s, p)    F( w, s, p)    G( x, w, s, p)    N( x, w, s, p)

Proof of Theorem psgnfval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2  |-  N  =  (pmSgn `  D )
2 fveq2 5541 . . . . . . . . . 10  |-  ( d  =  D  ->  ( SymGrp `
 d )  =  ( SymGrp `  D )
)
3 psgnfval.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
42, 3syl6eqr 2346 . . . . . . . . 9  |-  ( d  =  D  ->  ( SymGrp `
 d )  =  G )
54fveq2d 5545 . . . . . . . 8  |-  ( d  =  D  ->  ( Base `  ( SymGrp `  d
) )  =  (
Base `  G )
)
6 psgnfval.b . . . . . . . 8  |-  B  =  ( Base `  G
)
75, 6syl6eqr 2346 . . . . . . 7  |-  ( d  =  D  ->  ( Base `  ( SymGrp `  d
) )  =  B )
8 rabeq 2795 . . . . . . 7  |-  ( (
Base `  ( SymGrp `  d ) )  =  B  ->  { p  e.  ( Base `  ( SymGrp `
 d ) )  |  dom  ( p 
\  _I  )  e. 
Fin }  =  {
p  e.  B  |  dom  ( p  \  _I  )  e.  Fin } )
97, 8syl 15 . . . . . 6  |-  ( d  =  D  ->  { p  e.  ( Base `  ( SymGrp `
 d ) )  |  dom  ( p 
\  _I  )  e. 
Fin }  =  {
p  e.  B  |  dom  ( p  \  _I  )  e.  Fin } )
10 psgnfval.f . . . . . 6  |-  F  =  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }
119, 10syl6eqr 2346 . . . . 5  |-  ( d  =  D  ->  { p  e.  ( Base `  ( SymGrp `
 d ) )  |  dom  ( p 
\  _I  )  e. 
Fin }  =  F
)
12 fveq2 5541 . . . . . . . . . 10  |-  ( d  =  D  ->  (pmTrsp `  d )  =  (pmTrsp `  D ) )
1312rneqd 4922 . . . . . . . . 9  |-  ( d  =  D  ->  ran  (pmTrsp `  d )  =  ran  (pmTrsp `  D
) )
14 psgnfval.t . . . . . . . . 9  |-  T  =  ran  (pmTrsp `  D
)
1513, 14syl6eqr 2346 . . . . . . . 8  |-  ( d  =  D  ->  ran  (pmTrsp `  d )  =  T )
16 wrdeq 11440 . . . . . . . 8  |-  ( ran  (pmTrsp `  d )  =  T  -> Word  ran  (pmTrsp `  d )  = Word  T
)
1715, 16syl 15 . . . . . . 7  |-  ( d  =  D  -> Word  ran  (pmTrsp `  d )  = Word  T
)
184oveq1d 5889 . . . . . . . . 9  |-  ( d  =  D  ->  (
( SymGrp `  d )  gsumg  w )  =  ( G 
gsumg  w ) )
1918eqeq2d 2307 . . . . . . . 8  |-  ( d  =  D  ->  (
x  =  ( (
SymGrp `  d )  gsumg  w )  <-> 
x  =  ( G 
gsumg  w ) ) )
2019anbi1d 685 . . . . . . 7  |-  ( d  =  D  ->  (
( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( x  =  ( G  gsumg  w )  /\  s  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
2117, 20rexeqbidv 2762 . . . . . 6  |-  ( d  =  D  ->  ( E. w  e. Word  ran  (pmTrsp `  d ) ( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2221iotabidv 5256 . . . . 5  |-  ( d  =  D  ->  ( iota s E. w  e. Word  ran  (pmTrsp `  d )
( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  =  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2311, 22mpteq12dv 4114 . . . 4  |-  ( d  =  D  ->  (
x  e.  { p  e.  ( Base `  ( SymGrp `
 d ) )  |  dom  ( p 
\  _I  )  e. 
Fin }  |->  ( iota s E. w  e. Word  ran  (pmTrsp `  d )
( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
24 df-psgn 27518 . . . 4  |- pmSgn  =  ( d  e.  _V  |->  ( x  e.  { p  e.  ( Base `  ( SymGrp `
 d ) )  |  dom  ( p 
\  _I  )  e. 
Fin }  |->  ( iota s E. w  e. Word  ran  (pmTrsp `  d )
( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
25 fvex 5555 . . . . . . . 8  |-  ( Base `  G )  e.  _V
266, 25eqeltri 2366 . . . . . . 7  |-  B  e. 
_V
2726rabex 4181 . . . . . 6  |-  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }  e.  _V
2810, 27eqeltri 2366 . . . . 5  |-  F  e. 
_V
2928mptex 5762 . . . 4  |-  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  e.  _V
3023, 24, 29fvmpt 5618 . . 3  |-  ( D  e.  _V  ->  (pmSgn `  D )  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
31 fvprc 5535 . . . 4  |-  ( -.  D  e.  _V  ->  (pmSgn `  D )  =  (/) )
32 fvprc 5535 . . . . . . . . . . . . 13  |-  ( -.  D  e.  _V  ->  (
SymGrp `  D )  =  (/) )
333, 32syl5eq 2340 . . . . . . . . . . . 12  |-  ( -.  D  e.  _V  ->  G  =  (/) )
3433fveq2d 5545 . . . . . . . . . . 11  |-  ( -.  D  e.  _V  ->  (
Base `  G )  =  ( Base `  (/) ) )
35 base0 13201 . . . . . . . . . . 11  |-  (/)  =  (
Base `  (/) )
3634, 35syl6eqr 2346 . . . . . . . . . 10  |-  ( -.  D  e.  _V  ->  (
Base `  G )  =  (/) )
376, 36syl5eq 2340 . . . . . . . . 9  |-  ( -.  D  e.  _V  ->  B  =  (/) )
38 rabeq 2795 . . . . . . . . 9  |-  ( B  =  (/)  ->  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }  =  {
p  e.  (/)  |  dom  ( p  \  _I  )  e.  Fin } )
3937, 38syl 15 . . . . . . . 8  |-  ( -.  D  e.  _V  ->  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }  =  { p  e.  (/)  |  dom  ( p  \  _I  )  e.  Fin } )
40 rab0 3488 . . . . . . . 8  |-  { p  e.  (/)  |  dom  (
p  \  _I  )  e.  Fin }  =  (/)
4139, 40syl6eq 2344 . . . . . . 7  |-  ( -.  D  e.  _V  ->  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }  =  (/) )
4210, 41syl5eq 2340 . . . . . 6  |-  ( -.  D  e.  _V  ->  F  =  (/) )
43 mpteq1 4116 . . . . . 6  |-  ( F  =  (/)  ->  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  =  ( x  e.  (/)  |->  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
4442, 43syl 15 . . . . 5  |-  ( -.  D  e.  _V  ->  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  =  ( x  e.  (/)  |->  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
45 mpt0 5387 . . . . 5  |-  ( x  e.  (/)  |->  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  =  (/)
4644, 45syl6eq 2344 . . . 4  |-  ( -.  D  e.  _V  ->  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )  =  (/) )
4731, 46eqtr4d 2331 . . 3  |-  ( -.  D  e.  _V  ->  (pmSgn `  D )  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
4830, 47pm2.61i 156 . 2  |-  (pmSgn `  D )  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
491, 48eqtri 2316 1  |-  N  =  ( x  e.  F  |->  ( iota s E. w  e. Word  T ( x  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162   (/)c0 3468    e. cmpt 4093    _I cid 4320   dom cdm 4705   ran crn 4706   iotacio 5233   ` cfv 5271  (class class class)co 5874   Fincfn 6879   1c1 8754   -ucneg 9054   ^cexp 11120   #chash 11353  Word cword 11419   Basecbs 13164    gsumg cgsu 13417   SymGrpcsymg 14785  pmTrspcpmtr 27487  pmSgncpsgn 27517
This theorem is referenced by:  psgnfn  27527  psgnval  27533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-word 11425  df-slot 13168  df-base 13169  df-psgn 27518
  Copyright terms: Public domain W3C validator