Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnunilem3 Unicode version

Theorem psgnunilem3 27419
Description: Lemma for psgnuni 27422. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem3.g  |-  G  =  ( SymGrp `  D )
psgnunilem3.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem3.d  |-  ( ph  ->  D  e.  V )
psgnunilem3.w1  |-  ( ph  ->  W  e. Word  T )
psgnunilem3.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem3.w2  |-  ( ph  ->  ( # `  W
)  e.  NN )
psgnunilem3.w3  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem3.in  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
Assertion
Ref Expression
psgnunilem3  |-  -.  ph
Distinct variable groups:    x, D    x, G    x, L    x, T    x, W    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem psgnunilem3
Dummy variables  a 
b  c  d  e  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem3.l . . . 4  |-  ( ph  ->  ( # `  W
)  =  L )
2 psgnunilem3.w2 . . . 4  |-  ( ph  ->  ( # `  W
)  e.  NN )
31, 2eqeltrrd 2358 . . 3  |-  ( ph  ->  L  e.  NN )
43nnnn0d 10018 . 2  |-  ( ph  ->  L  e.  NN0 )
5 psgnunilem3.w1 . . . . . . 7  |-  ( ph  ->  W  e. Word  T )
6 wrdf 11419 . . . . . . 7  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
75, 6syl 15 . . . . . 6  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
8 0nn0 9980 . . . . . . . . 9  |-  0  e.  NN0
98a1i 10 . . . . . . . 8  |-  ( ph  ->  0  e.  NN0 )
103nngt0d 9789 . . . . . . . 8  |-  ( ph  ->  0  <  L )
11 elfzo0 10904 . . . . . . . 8  |-  ( 0  e.  ( 0..^ L )  <->  ( 0  e. 
NN0  /\  L  e.  NN  /\  0  <  L
) )
129, 3, 10, 11syl3anbrc 1136 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0..^ L ) )
131oveq2d 5874 . . . . . . 7  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
1412, 13eleqtrrd 2360 . . . . . 6  |-  ( ph  ->  0  e.  ( 0..^ ( # `  W
) ) )
15 ffvelrn 5663 . . . . . 6  |-  ( ( W : ( 0..^ ( # `  W
) ) --> T  /\  0  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  0
)  e.  T )
167, 14, 15syl2anc 642 . . . . 5  |-  ( ph  ->  ( W `  0
)  e.  T )
17 eqid 2283 . . . . . 6  |-  (pmTrsp `  D )  =  (pmTrsp `  D )
18 psgnunilem3.t . . . . . 6  |-  T  =  ran  (pmTrsp `  D
)
1917, 18pmtrfmvdn0 27403 . . . . 5  |-  ( ( W `  0 )  e.  T  ->  dom  ( ( W ` 
0 )  \  _I  )  =/=  (/) )
2016, 19syl 15 . . . 4  |-  ( ph  ->  dom  ( ( W `
 0 )  \  _I  )  =/=  (/) )
21 n0 3464 . . . 4  |-  ( dom  ( ( W ` 
0 )  \  _I  )  =/=  (/)  <->  E. e  e  e. 
dom  ( ( W `
 0 )  \  _I  ) )
2220, 21sylib 188 . . 3  |-  ( ph  ->  E. e  e  e. 
dom  ( ( W `
 0 )  \  _I  ) )
23 fzonel 10887 . . . . . . . . . 10  |-  -.  L  e.  ( 0..^ L )
24 simpr1 961 . . . . . . . . . 10  |-  ( ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  ->  L  e.  ( 0..^ L ) )
2523, 24mto 167 . . . . . . . . 9  |-  -.  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )
2625a1i 10 . . . . . . . 8  |-  ( w  e. Word  T  ->  -.  ( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
2726nrex 2645 . . . . . . 7  |-  -.  E. w  e. Word  T (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )
28 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  0  ->  (
a  e.  ( 0..^ L )  <->  0  e.  ( 0..^ L ) ) )
29 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( a  =  0  ->  (
w `  a )  =  ( w ` 
0 ) )
3029difeq1d 3293 . . . . . . . . . . . . . 14  |-  ( a  =  0  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 0 )  \  _I  ) )
3130dmeqd 4881 . . . . . . . . . . . . 13  |-  ( a  =  0  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  0 ) 
\  _I  ) )
3231eleq2d 2350 . . . . . . . . . . . 12  |-  ( a  =  0  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  0 ) 
\  _I  ) ) )
33 oveq2 5866 . . . . . . . . . . . . 13  |-  ( a  =  0  ->  (
0..^ a )  =  ( 0..^ 0 ) )
3433raleqdv 2742 . . . . . . . . . . . 12  |-  ( a  =  0  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
3528, 32, 343anbi123d 1252 . . . . . . . . . . 11  |-  ( a  =  0  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( 0  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( w `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
3635anbi2d 684 . . . . . . . . . 10  |-  ( a  =  0  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
3736rexbidv 2564 . . . . . . . . 9  |-  ( a  =  0  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
3837imbi2d 307 . . . . . . . 8  |-  ( a  =  0  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
39 eleq1 2343 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
a  e.  ( 0..^ L )  <->  b  e.  ( 0..^ L ) ) )
40 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
w `  a )  =  ( w `  b ) )
4140difeq1d 3293 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 b )  \  _I  ) )
4241dmeqd 4881 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  b ) 
\  _I  ) )
4342eleq2d 2350 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  b ) 
\  _I  ) ) )
44 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
0..^ a )  =  ( 0..^ b ) )
4544raleqdv 2742 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
4639, 43, 453anbi123d 1252 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
4746anbi2d 684 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
4847rexbidv 2564 . . . . . . . . . 10  |-  ( a  =  b  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
49 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
5049eqeq1d 2291 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  x )  =  (  _I  |`  D )
) )
51 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
5251eqeq1d 2291 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
( # `  w )  =  L  <->  ( # `  x
)  =  L ) )
5350, 52anbi12d 691 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  <-> 
( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L ) ) )
54 fveq1 5524 . . . . . . . . . . . . . . . 16  |-  ( w  =  x  ->  (
w `  b )  =  ( x `  b ) )
5554difeq1d 3293 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  (
( w `  b
)  \  _I  )  =  ( ( x `
 b )  \  _I  ) )
5655dmeqd 4881 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  dom  ( ( w `  b )  \  _I  )  =  dom  ( ( x `  b ) 
\  _I  ) )
5756eleq2d 2350 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
e  e.  dom  (
( w `  b
)  \  _I  )  <->  e  e.  dom  ( ( x `  b ) 
\  _I  ) ) )
58 fveq1 5524 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  x  ->  (
w `  c )  =  ( x `  c ) )
5958difeq1d 3293 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  x  ->  (
( w `  c
)  \  _I  )  =  ( ( x `
 c )  \  _I  ) )
6059dmeqd 4881 . . . . . . . . . . . . . . . . 17  |-  ( w  =  x  ->  dom  ( ( w `  c )  \  _I  )  =  dom  ( ( x `  c ) 
\  _I  ) )
6160eleq2d 2350 . . . . . . . . . . . . . . . 16  |-  ( w  =  x  ->  (
e  e.  dom  (
( w `  c
)  \  _I  )  <->  e  e.  dom  ( ( x `  c ) 
\  _I  ) ) )
6261notbid 285 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( -.  e  e.  dom  ( ( w `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( x `  c )  \  _I  ) ) )
6362ralbidv 2563 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  ( A. c  e.  (
0..^ b )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 c )  \  _I  ) ) )
64 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  d  ->  (
x `  c )  =  ( x `  d ) )
6564difeq1d 3293 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  d  ->  (
( x `  c
)  \  _I  )  =  ( ( x `
 d )  \  _I  ) )
6665dmeqd 4881 . . . . . . . . . . . . . . . . 17  |-  ( c  =  d  ->  dom  ( ( x `  c )  \  _I  )  =  dom  ( ( x `  d ) 
\  _I  ) )
6766eleq2d 2350 . . . . . . . . . . . . . . . 16  |-  ( c  =  d  ->  (
e  e.  dom  (
( x `  c
)  \  _I  )  <->  e  e.  dom  ( ( x `  d ) 
\  _I  ) ) )
6867notbid 285 . . . . . . . . . . . . . . 15  |-  ( c  =  d  ->  ( -.  e  e.  dom  ( ( x `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )
6968cbvralv 2764 . . . . . . . . . . . . . 14  |-  ( A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 c )  \  _I  )  <->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  (
( x `  d
)  \  _I  )
)
7063, 69syl6bb 252 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  ( A. c  e.  (
0..^ b )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 d )  \  _I  ) ) )
7157, 703anbi23d 1255 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b ) 
\  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )
7253, 71anbi12d 691 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )
7372cbvrexv 2765 . . . . . . . . . 10  |-  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )
7448, 73syl6bb 252 . . . . . . . . 9  |-  ( a  =  b  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )
7574imbi2d 307 . . . . . . . 8  |-  ( a  =  b  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. x  e. Word  T
( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) ) )
76 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  ( b  +  1 )  ->  (
a  e.  ( 0..^ L )  <->  ( b  +  1 )  e.  ( 0..^ L ) ) )
77 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( a  =  ( b  +  1 )  ->  (
w `  a )  =  ( w `  ( b  +  1 ) ) )
7877difeq1d 3293 . . . . . . . . . . . . . 14  |-  ( a  =  ( b  +  1 )  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 ( b  +  1 ) )  \  _I  ) )
7978dmeqd 4881 . . . . . . . . . . . . 13  |-  ( a  =  ( b  +  1 )  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  ( b  +  1 ) ) 
\  _I  ) )
8079eleq2d 2350 . . . . . . . . . . . 12  |-  ( a  =  ( b  +  1 )  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  ( b  +  1 ) ) 
\  _I  ) ) )
81 oveq2 5866 . . . . . . . . . . . . 13  |-  ( a  =  ( b  +  1 )  ->  (
0..^ a )  =  ( 0..^ ( b  +  1 ) ) )
8281raleqdv 2742 . . . . . . . . . . . 12  |-  ( a  =  ( b  +  1 )  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
8376, 80, 823anbi123d 1252 . . . . . . . . . . 11  |-  ( a  =  ( b  +  1 )  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( (
b  +  1 )  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( w `
 ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
8483anbi2d 684 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
8584rexbidv 2564 . . . . . . . . 9  |-  ( a  =  ( b  +  1 )  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
8685imbi2d 307 . . . . . . . 8  |-  ( a  =  ( b  +  1 )  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
87 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  L  ->  (
a  e.  ( 0..^ L )  <->  L  e.  ( 0..^ L ) ) )
88 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( a  =  L  ->  (
w `  a )  =  ( w `  L ) )
8988difeq1d 3293 . . . . . . . . . . . . . 14  |-  ( a  =  L  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 L )  \  _I  ) )
9089dmeqd 4881 . . . . . . . . . . . . 13  |-  ( a  =  L  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  L ) 
\  _I  ) )
9190eleq2d 2350 . . . . . . . . . . . 12  |-  ( a  =  L  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  L ) 
\  _I  ) ) )
92 oveq2 5866 . . . . . . . . . . . . 13  |-  ( a  =  L  ->  (
0..^ a )  =  ( 0..^ L ) )
9392raleqdv 2742 . . . . . . . . . . . 12  |-  ( a  =  L  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
9487, 91, 933anbi123d 1252 . . . . . . . . . . 11  |-  ( a  =  L  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
9594anbi2d 684 . . . . . . . . . 10  |-  ( a  =  L  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
9695rexbidv 2564 . . . . . . . . 9  |-  ( a  =  L  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
9796imbi2d 307 . . . . . . . 8  |-  ( a  =  L  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
985adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  W  e. Word  T )
99 psgnunilem3.w3 . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
10099, 1jca 518 . . . . . . . . . 10  |-  ( ph  ->  ( ( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) )
101100adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  (
( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) )
10212adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  0  e.  ( 0..^ L ) )
103 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  e  e.  dom  ( ( W `
 0 )  \  _I  ) )
104 ral0 3558 . . . . . . . . . . . 12  |-  A. c  e.  (/)  -.  e  e. 
dom  ( ( W `
 c )  \  _I  )
105 fzo0 10893 . . . . . . . . . . . . 13  |-  ( 0..^ 0 )  =  (/)
106105raleqi 2740 . . . . . . . . . . . 12  |-  ( A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `
 c )  \  _I  )  <->  A. c  e.  (/)  -.  e  e.  dom  (
( W `  c
)  \  _I  )
)
107104, 106mpbir 200 . . . . . . . . . . 11  |-  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  )
108107a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) )
109102, 103, 1083jca 1132 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  (
0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) )
110 oveq2 5866 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  ( G  gsumg  w )  =  ( G  gsumg  W ) )
111110eqeq1d 2291 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  W )  =  (  _I  |`  D )
) )
112 fveq2 5525 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
113112eqeq1d 2291 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( # `  w )  =  L  <->  ( # `  W
)  =  L ) )
114111, 113anbi12d 691 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  <-> 
( ( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) ) )
115 fveq1 5524 . . . . . . . . . . . . . . 15  |-  ( w  =  W  ->  (
w `  0 )  =  ( W ` 
0 ) )
116115difeq1d 3293 . . . . . . . . . . . . . 14  |-  ( w  =  W  ->  (
( w `  0
)  \  _I  )  =  ( ( W `
 0 )  \  _I  ) )
117116dmeqd 4881 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  dom  ( ( w ` 
0 )  \  _I  )  =  dom  ( ( W `  0 ) 
\  _I  ) )
118117eleq2d 2350 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
e  e.  dom  (
( w `  0
)  \  _I  )  <->  e  e.  dom  ( ( W `  0 ) 
\  _I  ) ) )
119 fveq1 5524 . . . . . . . . . . . . . . . . 17  |-  ( w  =  W  ->  (
w `  c )  =  ( W `  c ) )
120119difeq1d 3293 . . . . . . . . . . . . . . . 16  |-  ( w  =  W  ->  (
( w `  c
)  \  _I  )  =  ( ( W `
 c )  \  _I  ) )
121120dmeqd 4881 . . . . . . . . . . . . . . 15  |-  ( w  =  W  ->  dom  ( ( w `  c )  \  _I  )  =  dom  ( ( W `  c ) 
\  _I  ) )
122121eleq2d 2350 . . . . . . . . . . . . . 14  |-  ( w  =  W  ->  (
e  e.  dom  (
( w `  c
)  \  _I  )  <->  e  e.  dom  ( ( W `  c ) 
\  _I  ) ) )
123122notbid 285 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  ( -.  e  e.  dom  ( ( w `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) )
124123ralbidv 2563 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( A. c  e.  (
0..^ 0 )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `
 c )  \  _I  ) ) )
125118, 1243anbi23d 1255 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  0 ) 
\  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( 0  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( W `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) )
126114, 125anbi12d 691 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) ) )
127126rspcev 2884 . . . . . . . . 9  |-  ( ( W  e. Word  T  /\  ( ( ( G 
gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
12898, 101, 109, 127syl12anc 1180 . . . . . . . 8  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
129 psgnunilem3.g . . . . . . . . . . . . 13  |-  G  =  ( SymGrp `  D )
130 psgnunilem3.d . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  V )
131130ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  D  e.  V )
132 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  x  e. Word  T )
133 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
( G  gsumg  x )  =  (  _I  |`  D )
)
134133ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  ( G  gsumg  x )  =  (  _I  |`  D ) )
135 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
( # `  x )  =  L )
136135ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  ( # `  x
)  =  L )
137 simpr1 961 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
b  e.  ( 0..^ L ) )
138137ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  b  e.  ( 0..^ L ) )
139 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
e  e.  dom  (
( x `  b
)  \  _I  )
)
140139ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  e  e.  dom  ( ( x `  b )  \  _I  ) )
141 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  ->  A. d  e.  (
0..^ b )  -.  e  e.  dom  (
( x `  d
)  \  _I  )
)
142141ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) )
143 psgnunilem3.in . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
144 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
145144eqeq1d 2291 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( # `  x )  =  ( L  - 
2 )  <->  ( # `  y
)  =  ( L  -  2 ) ) )
146 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( G  gsumg  x )  =  ( G  gsumg  y ) )
147146eqeq1d 2291 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( G  gsumg  x )  =  (  _I  |`  D )  <->  ( G  gsumg  y )  =  (  _I  |`  D )
) )
148145, 147anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( ( # `  x
)  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) ) )
149148cbvrexv 2765 . . . . . . . . . . . . . . 15  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. y  e. Word  T
( ( # `  y
)  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
150143, 149sylnib 295 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
151150ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
152129, 18, 131, 132, 134, 136, 138, 140, 142, 151psgnunilem2 27418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
153152expr 598 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  x  e. Word  T )  ->  (
( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
154153rexlimdva 2667 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  ( E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
155154a2i 12 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  ->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )  ->  ( ( ph  /\  e  e.  dom  (
( W `  0
)  \  _I  )
)  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
156155a1i 10 . . . . . . . 8  |-  ( b  e.  NN0  ->  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  ->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )  ->  ( ( ph  /\  e  e.  dom  (
( W `  0
)  \  _I  )
)  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
15738, 75, 86, 97, 128, 156nn0ind 10108 . . . . . . 7  |-  ( L  e.  NN0  ->  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
15827, 157mtoi 169 . . . . . 6  |-  ( L  e.  NN0  ->  -.  ( ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) ) )
159158con2i 112 . . . . 5  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  -.  L  e.  NN0 )
160159ex 423 . . . 4  |-  ( ph  ->  ( e  e.  dom  ( ( W ` 
0 )  \  _I  )  ->  -.  L  e.  NN0 ) )
161160exlimdv 1664 . . 3  |-  ( ph  ->  ( E. e  e  e.  dom  ( ( W `  0 ) 
\  _I  )  ->  -.  L  e.  NN0 ) )
16222, 161mpd 14 . 2  |-  ( ph  ->  -.  L  e.  NN0 )
1634, 162pm2.65i 165 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149   (/)c0 3455   class class class wbr 4023    _I cid 4304   dom cdm 4689   ran crn 4690    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965  ..^cfzo 10870   #chash 11337  Word cword 11403    gsumg cgsu 13401   SymGrpcsymg 14769  pmTrspcpmtr 27384
This theorem is referenced by:  psgnunilem4  27420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-s2 11498  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-tset 13227  df-0g 13404  df-gsum 13405  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-subg 14618  df-symg 14770  df-pmtr 27385
  Copyright terms: Public domain W3C validator