Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnunilem4 Structured version   Unicode version

Theorem psgnunilem4 27399
Description: Lemma for psgnuni 27401. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g  |-  G  =  ( SymGrp `  D )
psgnunilem4.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem4.d  |-  ( ph  ->  D  e.  V )
psgnunilem4.w1  |-  ( ph  ->  W  e. Word  T )
psgnunilem4.w2  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
Assertion
Ref Expression
psgnunilem4  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  1 )

Proof of Theorem psgnunilem4
Dummy variables  x  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2  |-  ( ph  ->  W  e. Word  T )
2 psgnunilem4.w2 . 2  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
3 wrdfin 11736 . . . . 5  |-  ( W  e. Word  T  ->  W  e.  Fin )
4 hashcl 11641 . . . . 5  |-  ( W  e.  Fin  ->  ( # `
 W )  e. 
NN0 )
51, 3, 43syl 19 . . . 4  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
6 nn0uz 10522 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2528 . . 3  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= ` 
0 ) )
8 fveq2 5730 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
9 hash0 11648 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
108, 9syl6eq 2486 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( # `  w )  =  0 )
1110oveq2d 6099 . . . . . . . 8  |-  ( w  =  (/)  ->  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ 0 ) )
12 neg1cn 10069 . . . . . . . . 9  |-  -u 1  e.  CC
13 exp0 11388 . . . . . . . . 9  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
1412, 13ax-mp 8 . . . . . . . 8  |-  ( -u
1 ^ 0 )  =  1
1511, 14syl6eq 2486 . . . . . . 7  |-  ( w  =  (/)  ->  ( -u
1 ^ ( # `  w ) )  =  1 )
1615a1d 24 . . . . . 6  |-  ( w  =  (/)  ->  ( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) )
1716a1d 24 . . . . 5  |-  ( w  =  (/)  ->  ( (
ph  /\  A. x
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) )
18 psgnunilem4.g . . . . . . . . . . . . 13  |-  G  =  ( SymGrp `  D )
19 psgnunilem4.t . . . . . . . . . . . . 13  |-  T  =  ran  (pmTrsp `  D
)
20 simpl1 961 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ph )
21 psgnunilem4.d . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  V )
2220, 21syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  D  e.  V )
23 simpl3l 1013 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  e. Word  T )
24 eqidd 2439 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( # `
 w )  =  ( # `  w
) )
25 wrdfin 11736 . . . . . . . . . . . . . . 15  |-  ( w  e. Word  T  ->  w  e.  Fin )
2623, 25syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  e.  Fin )
27 simpl2 962 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  =/=  (/) )
28 hashnncl 11647 . . . . . . . . . . . . . . 15  |-  ( w  e.  Fin  ->  (
( # `  w )  e.  NN  <->  w  =/=  (/) ) )
2928biimpar 473 . . . . . . . . . . . . . 14  |-  ( ( w  e.  Fin  /\  w  =/=  (/) )  ->  ( # `
 w )  e.  NN )
3026, 27, 29syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( # `
 w )  e.  NN )
31 simpl3r 1014 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( G  gsumg  w )  =  (  _I  |`  D )
)
32 fveq2 5730 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
3332eqeq1d 2446 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( # `  x )  =  ( ( # `  w )  -  2 )  <->  ( # `  y
)  =  ( (
# `  w )  -  2 ) ) )
34 oveq2 6091 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  ( G  gsumg  x )  =  ( G  gsumg  y ) )
3534eqeq1d 2446 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( G  gsumg  x )  =  (  _I  |`  D )  <->  ( G  gsumg  y )  =  (  _I  |`  D )
) )
3633, 35anbi12d 693 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) ) )
3736cbvrexv 2935 . . . . . . . . . . . . . . . 16  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. y  e. Word  T
( ( # `  y
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
3837notbii 289 . . . . . . . . . . . . . . 15  |-  ( -. 
E. x  e. Word  T
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  -.  E. y  e. Word  T ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
3938biimpi 188 . . . . . . . . . . . . . 14  |-  ( -. 
E. x  e. Word  T
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
4039adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  -.  E. y  e. Word  T ( ( # `  y
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
4118, 19, 22, 23, 24, 30, 31, 40psgnunilem3 27398 . . . . . . . . . . . 12  |-  -.  (
( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )
42 iman 415 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  ->  E. x  e. Word  T ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  <->  -.  (
( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )
4341, 42mpbir 202 . . . . . . . . . . 11  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  E. x  e. Word  T ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
44 df-rex 2713 . . . . . . . . . . 11  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. x ( x  e. Word  T  /\  (
( # `  x )  =  ( ( # `  w )  -  2 )  /\  ( G 
gsumg  x )  =  (  _I  |`  D )
) ) )
4543, 44sylib 190 . . . . . . . . . 10  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  E. x
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )
46 simprl 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  x  e. Word  T )
47 simprrr 743 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( G  gsumg  x )  =  (  _I  |`  D )
)
4846, 47jca 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )
49 wrdfin 11736 . . . . . . . . . . . . . . . . . 18  |-  ( x  e. Word  T  ->  x  e.  Fin )
50 hashcl 11641 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
5146, 49, 503syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  e.  NN0 )
52 simp3l 986 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  e. Word  T )
5352, 25syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  e.  Fin )
54 simp2 959 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  =/=  (/) )
5553, 54, 29syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( # `
 w )  e.  NN )
5655adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  NN )
57 simprrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  =  ( ( # `  w )  -  2 ) )
5856nnred 10017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  RR )
59 2rp 10619 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  RR+
60 ltsubrp 10645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  w
)  e.  RR  /\  2  e.  RR+ )  -> 
( ( # `  w
)  -  2 )  <  ( # `  w
) )
6158, 59, 60sylancl 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( # `  w
)  -  2 )  <  ( # `  w
) )
6257, 61eqbrtrd 4234 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  <  ( # `  w
) )
63 elfzo0 11173 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  x )  e.  ( 0..^ ( # `  w ) )  <->  ( ( # `
 x )  e. 
NN0  /\  ( # `  w
)  e.  NN  /\  ( # `  x )  <  ( # `  w
) ) )
6451, 56, 62, 63syl3anbrc 1139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  e.  ( 0..^ (
# `  w )
) )
65 id 21 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( # `  x )  e.  ( 0..^ (
# `  w )
)  ->  ( (
x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )
6665com13 77 . . . . . . . . . . . . . . . 16  |-  ( ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( ( # `
 x )  e.  ( 0..^ ( # `  w ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  x ) )  =  1 ) ) )
6748, 64, 66sylc 59 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  x ) )  =  1 ) )
6857oveq2d 6099 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 x ) )  =  ( -u 1 ^ ( ( # `  w )  -  2 ) ) )
6912a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  -u 1  e.  CC )
70 ax-1cn 9050 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
71 ax-1ne0 9061 . . . . . . . . . . . . . . . . . . . 20  |-  1  =/=  0
7270, 71negne0i 9377 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  =/=  0
7372a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  -u 1  =/=  0 )
74 2z 10314 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ZZ
7574a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
2  e.  ZZ )
7656nnzd 10376 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  ZZ )
7769, 73, 75, 76expsubd 11536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ (
( # `  w )  -  2 ) )  =  ( ( -u
1 ^ ( # `  w ) )  / 
( -u 1 ^ 2 ) ) )
78 sqneg 11444 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
7970, 78ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
80 sq1 11478 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ^ 2 )  =  1
8179, 80eqtri 2458 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1 ^ 2 )  =  1
8281oveq2i 6094 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1 ^ ( # `
 w ) )  /  ( -u 1 ^ 2 ) )  =  ( ( -u
1 ^ ( # `  w ) )  / 
1 )
83 m1expcl 11406 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  w )  e.  ZZ  ->  ( -u 1 ^ ( # `  w
) )  e.  ZZ )
8483zcnd 10378 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  w )  e.  ZZ  ->  ( -u 1 ^ ( # `  w
) )  e.  CC )
8576, 84syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 w ) )  e.  CC )
8685div1d 9784 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  w
) )  /  1
)  =  ( -u
1 ^ ( # `  w ) ) )
8782, 86syl5eq 2482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  w
) )  /  ( -u 1 ^ 2 ) )  =  ( -u
1 ^ ( # `  w ) ) )
8868, 77, 873eqtrd 2474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 x ) )  =  ( -u 1 ^ ( # `  w
) ) )
8988eqeq1d 2446 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  x
) )  =  1  <-> 
( -u 1 ^ ( # `
 w ) )  =  1 ) )
9067, 89sylibd 207 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
9190ex 425 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  (
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  (
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
9291com23 75 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  (
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
9392alimdv 1632 . . . . . . . . . . 11  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  A. x
( ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
94 19.23v 1915 . . . . . . . . . . 11  |-  ( A. x ( ( x  e. Word  T  /\  (
( # `  x )  =  ( ( # `  w )  -  2 )  /\  ( G 
gsumg  x )  =  (  _I  |`  D )
) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 )  <->  ( E. x ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
9593, 94syl6ib 219 . . . . . . . . . 10  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( E. x ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
9645, 95mpid 40 . . . . . . . . 9  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
97963exp 1153 . . . . . . . 8  |-  ( ph  ->  ( w  =/=  (/)  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) ) )
9897com34 80 . . . . . . 7  |-  ( ph  ->  ( w  =/=  (/)  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) ) )
9998com12 30 . . . . . 6  |-  ( w  =/=  (/)  ->  ( ph  ->  ( A. x ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) ) )
10099imp3a 422 . . . . 5  |-  ( w  =/=  (/)  ->  ( ( ph  /\  A. x ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) )
10117, 100pm2.61ine 2682 . . . 4  |-  ( (
ph  /\  A. x
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) )
1021013adant2 977 . . 3  |-  ( (
ph  /\  ( # `  w
)  e.  ( 0 ... ( # `  W
) )  /\  A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) )
103 eleq1 2498 . . . . 5  |-  ( w  =  x  ->  (
w  e. Word  T  <->  x  e. Word  T ) )
104 oveq2 6091 . . . . . 6  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
105104eqeq1d 2446 . . . . 5  |-  ( w  =  x  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  x )  =  (  _I  |`  D )
) )
106103, 105anbi12d 693 . . . 4  |-  ( w  =  x  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  <->  ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) ) )
107 fveq2 5730 . . . . . 6  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
108107oveq2d 6099 . . . . 5  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
109108eqeq1d 2446 . . . 4  |-  ( w  =  x  ->  (
( -u 1 ^ ( # `
 w ) )  =  1  <->  ( -u 1 ^ ( # `  x
) )  =  1 ) )
110106, 109imbi12d 313 . . 3  |-  ( w  =  x  ->  (
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 )  <->  ( ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )
111 eleq1 2498 . . . . 5  |-  ( w  =  W  ->  (
w  e. Word  T  <->  W  e. Word  T ) )
112 oveq2 6091 . . . . . 6  |-  ( w  =  W  ->  ( G  gsumg  w )  =  ( G  gsumg  W ) )
113112eqeq1d 2446 . . . . 5  |-  ( w  =  W  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  W )  =  (  _I  |`  D )
) )
114111, 113anbi12d 693 . . . 4  |-  ( w  =  W  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  <->  ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D ) ) ) )
115 fveq2 5730 . . . . . 6  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
116115oveq2d 6099 . . . . 5  |-  ( w  =  W  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  W
) ) )
117116eqeq1d 2446 . . . 4  |-  ( w  =  W  ->  (
( -u 1 ^ ( # `
 w ) )  =  1  <->  ( -u 1 ^ ( # `  W
) )  =  1 ) )
118114, 117imbi12d 313 . . 3  |-  ( w  =  W  ->  (
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 )  <->  ( ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  W
) )  =  1 ) ) )
1191, 7, 102, 110, 118, 107, 115uzindi 11322 . 2  |-  ( ph  ->  ( ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  W
) )  =  1 ) )
1201, 2, 119mp2and 662 1  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   (/)c0 3630   class class class wbr 4214    _I cid 4495   ran crn 4881    |` cres 4882   ` cfv 5456  (class class class)co 6083   Fincfn 7111   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    < clt 9122    - cmin 9293   -ucneg 9294    / cdiv 9679   NNcn 10002   2c2 10051   NN0cn0 10223   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   ...cfz 11045  ..^cfzo 11137   ^cexp 11384   #chash 11620  Word cword 11719    gsumg cgsu 13726   SymGrpcsymg 15094  pmTrspcpmtr 27363
This theorem is referenced by:  psgnuni  27401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-xor 1315  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-ot 3826  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-word 11725  df-concat 11726  df-s1 11727  df-substr 11728  df-splice 11729  df-s2 11814  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-tset 13550  df-0g 13729  df-gsum 13730  df-mnd 14692  df-submnd 14741  df-grp 14814  df-minusg 14815  df-subg 14943  df-symg 15095  df-pmtr 27364
  Copyright terms: Public domain W3C validator