Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnunilem5 Unicode version

Theorem psgnunilem5 27520
Description: Lemma for psgnuni 27525. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving  A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g  |-  G  =  ( SymGrp `  D )
psgnunilem2.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem2.d  |-  ( ph  ->  D  e.  V )
psgnunilem2.w  |-  ( ph  ->  W  e. Word  T )
psgnunilem2.id  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem2.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem2.ix  |-  ( ph  ->  I  e.  ( 0..^ L ) )
psgnunilem2.a  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
psgnunilem2.al  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
Assertion
Ref Expression
psgnunilem5  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Distinct variable groups:    A, k    k, G    k, I    k, W
Allowed substitution hints:    ph( k)    D( k)    T( k)    L( k)    V( k)

Proof of Theorem psgnunilem5
Dummy variables  j 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3472 . . . 4  |-  -.  A  e.  (/)
2 psgnunilem2.id . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
32difeq1d 3306 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) 
\  _I  )  =  ( (  _I  |`  D ) 
\  _I  ) )
43dmeqd 4897 . . . . . 6  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  dom  ( (  _I  |`  D )  \  _I  ) )
5 resss 4995 . . . . . . . . 9  |-  (  _I  |`  D )  C_  _I
6 ssdif0 3526 . . . . . . . . 9  |-  ( (  _I  |`  D )  C_  _I  <->  ( (  _I  |`  D )  \  _I  )  =  (/) )
75, 6mpbi 199 . . . . . . . 8  |-  ( (  _I  |`  D )  \  _I  )  =  (/)
87dmeqi 4896 . . . . . . 7  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  dom  (/)
9 dm0 4908 . . . . . . 7  |-  dom  (/)  =  (/)
108, 9eqtri 2316 . . . . . 6  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  (/)
114, 10syl6eq 2344 . . . . 5  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  (/) )
1211eleq2d 2363 . . . 4  |-  ( ph  ->  ( A  e.  dom  ( ( G  gsumg  W ) 
\  _I  )  <->  A  e.  (/) ) )
131, 12mtbiri 294 . . 3  |-  ( ph  ->  -.  A  e.  dom  ( ( G  gsumg  W ) 
\  _I  ) )
14 psgnunilem2.d . . . . . . . . 9  |-  ( ph  ->  D  e.  V )
15 psgnunilem2.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
1615symggrp 14796 . . . . . . . . 9  |-  ( D  e.  V  ->  G  e.  Grp )
17 grpmnd 14510 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
1814, 16, 173syl 18 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
19 psgnunilem2.t . . . . . . . . . . . 12  |-  T  =  ran  (pmTrsp `  D
)
20 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
2119, 15, 20symgtrf 27513 . . . . . . . . . . 11  |-  T  C_  ( Base `  G )
22 sswrd 11439 . . . . . . . . . . 11  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
2321, 22mp1i 11 . . . . . . . . . 10  |-  ( ph  -> Word  T  C_ Word  ( Base `  G
) )
24 psgnunilem2.w . . . . . . . . . 10  |-  ( ph  ->  W  e. Word  T )
2523, 24sseldd 3194 . . . . . . . . 9  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
26 swrdcl 11468 . . . . . . . . 9  |-  ( W  e. Word  ( Base `  G
)  ->  ( W substr  <.
0 ,  I >. )  e. Word  ( Base `  G
) )
2725, 26syl 15 . . . . . . . 8  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )
2820gsumwcl 14479 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G ) )
2918, 27, 28syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
) )
3015, 20elsymgbas2 14789 . . . . . . . 8  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  <->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D ) )
3130ibi 232 . . . . . . 7  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D
)
3229, 31syl 15 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
3332adantr 451 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
34 wrdf 11435 . . . . . . . . . 10  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
3524, 34syl 15 . . . . . . . . 9  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
36 psgnunilem2.ix . . . . . . . . . 10  |-  ( ph  ->  I  e.  ( 0..^ L ) )
37 psgnunilem2.l . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  =  L )
3837oveq2d 5890 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
3936, 38eleqtrrd 2373 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
40 ffvelrn 5679 . . . . . . . . 9  |-  ( ( W : ( 0..^ ( # `  W
) ) --> T  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  I
)  e.  T )
4135, 39, 40syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( W `  I
)  e.  T )
4221, 41sseldi 3191 . . . . . . 7  |-  ( ph  ->  ( W `  I
)  e.  ( Base `  G ) )
4315, 20elsymgbas2 14789 . . . . . . . 8  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( ( W `  I )  e.  ( Base `  G
)  <->  ( W `  I ) : D -1-1-onto-> D
) )
4443ibi 232 . . . . . . 7  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( W `  I ) : D -1-1-onto-> D
)
4542, 44syl 15 . . . . . 6  |-  ( ph  ->  ( W `  I
) : D -1-1-onto-> D )
4645adantr 451 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W `  I ) : D -1-1-onto-> D )
4715, 20symgsssg 27511 . . . . . . . . . . . 12  |-  ( D  e.  V  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G ) )
48 subgsubm 14655 . . . . . . . . . . . 12  |-  ( { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G
)  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
4914, 47, 483syl 18 . . . . . . . . . . 11  |-  ( ph  ->  { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G ) )
5049adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
51 fzossfz 10908 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0..^ L )  C_  (
0 ... L )
5251, 36sseldi 3191 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  ( 0 ... L ) )
53 elfzuz3 10811 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 0 ... L )  ->  L  e.  ( ZZ>= `  I )
)
5452, 53syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  L  e.  ( ZZ>= `  I ) )
5537, 54eqeltrd 2370 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= `  I ) )
56 fzoss2 10913 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  e.  ( ZZ>= `  I )  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5755, 56syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5857sselda 3193 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  s  e.  ( 0..^ ( # `  W
) ) )
59 ffvelrn 5679 . . . . . . . . . . . . . . . . . 18  |-  ( ( W : ( 0..^ ( # `  W
) ) --> T  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  T )
6035, 59sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  T )
6121, 60sseldi 3191 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  ( Base `  G ) )
6258, 61syldan 456 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  (
Base `  G )
)
63 psgnunilem2.al . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
64 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  s  ->  ( W `  k )  =  ( W `  s ) )
6564difeq1d 3306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  s  ->  (
( W `  k
)  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6665dmeqd 4897 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  s  ->  dom  ( ( W `  k )  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
6766eleq2d 2363 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  s  ->  ( A  e.  dom  ( ( W `  k ) 
\  _I  )  <->  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6867notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  s  ->  ( -.  A  e.  dom  ( ( W `  k )  \  _I  ) 
<->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6968cbvralv 2777 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( 0..^ I )  -.  A  e.  dom  ( ( W `
 k )  \  _I  )  <->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
7063, 69sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
7170r19.21bi 2654 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) )
72 difeq1 3300 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( W `  s )  ->  (
j  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
7372dmeqd 4897 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( W `  s )  ->  dom  ( j  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
7473sseq1d 3218 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( W `  s ) 
\  _I  )  C_  ( _V  \  { A } ) ) )
75 disj2 3515 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } ) )
76 disjsn 3706 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( W `  s ) 
\  _I  ) )
7775, 76bitr3i 242 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) )
7874, 77syl6bb 252 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7978elrab 2936 . . . . . . . . . . . . . . 15  |-  ( ( W `  s )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  <->  ( ( W `  s )  e.  ( Base `  G
)  /\  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
8062, 71, 79sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  {
j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
81 eqid 2296 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )
8280, 81fmptd 5700 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
8337oveq2d 5890 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ... ( # `
 W ) )  =  ( 0 ... L ) )
8452, 83eleqtrrd 2373 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ( 0 ... ( # `  W
) ) )
85 swrd0val 11470 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  T  /\  I  e.  ( 0 ... ( # `  W
) ) )  -> 
( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8624, 84, 85syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8735feqmptd 5591 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  =  ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) ) )
8887reseq1d 4970 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W  |`  (
0..^ I ) )  =  ( ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) )  |`  ( 0..^ I ) ) )
89 resmpt 5016 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ I )  C_  ( 0..^ ( # `  W
) )  ->  (
( s  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
9055, 56, 893syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( s  e.  ( 0..^ ( # `  W ) )  |->  ( W `  s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
9186, 88, 903eqtrd 2332 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( s  e.  ( 0..^ I )  |->  ( W `
 s ) ) )
9291feq1d 5395 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  <-> 
( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } ) )
9382, 92mpbird 223 . . . . . . . . . . . 12  |-  ( ph  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
9493adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
95 iswrdi 11433 . . . . . . . . . . 11  |-  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9694, 95syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
97 gsumwsubmcl 14477 . . . . . . . . . 10  |-  ( ( { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G )  /\  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9850, 96, 97syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) } )
99 difeq1 3300 . . . . . . . . . . . . . 14  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( j  \  _I  )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )
)
10099dmeqd 4897 . . . . . . . . . . . . 13  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  dom  ( j 
\  _I  )  =  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
101100sseq1d 3218 . . . . . . . . . . . 12  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
102101elrab 2936 . . . . . . . . . . 11  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  <->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
103102simprbi 450 . . . . . . . . . 10  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
104 disj2 3515 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
105 disjsn 3706 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
106104, 105bitr3i 242 . . . . . . . . . 10  |-  ( dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
107103, 106sylib 188 . . . . . . . . 9  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10898, 107syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
109 psgnunilem2.a . . . . . . . . 9  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
110109adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( W `
 I )  \  _I  ) )
111108, 110jca 518 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) )
112111olcd 382 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `  I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
113 excxor 1300 . . . . . 6  |-  ( ( A  e.  dom  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) )  <->  ( ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `
 I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
114112, 113sylibr 203 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )
115 f1omvdco3 27495 . . . . 5  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D  /\  ( W `
 I ) : D -1-1-onto-> D  /\  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11633, 46, 114, 115syl3anc 1182 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11724adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  e. Word  T )
118 elfzo0 10920 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  <->  ( I  e. 
NN0  /\  L  e.  NN  /\  I  <  L
) )
119118simp2bi 971 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 0..^ L )  ->  L  e.  NN )
12036, 119syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  NN )
12137, 120eqeltrd 2370 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  W
)  e.  NN )
122 wrdfin 11436 . . . . . . . . . . . . 13  |-  ( W  e. Word  T  ->  W  e.  Fin )
123 hashnncl 11370 . . . . . . . . . . . . 13  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
12424, 122, 1233syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  e.  NN  <->  W  =/=  (/) ) )
125121, 124mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  W  =/=  (/) )
126125adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =/=  (/) )
127 wrdeqcats1 11490 . . . . . . . . . 10  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) concat  <" ( W `
 ( ( # `  W )  -  1 ) ) "> ) )
128117, 126, 127syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) concat  <" ( W `
 ( ( # `  W )  -  1 ) ) "> ) )
12937oveq1d 5889 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  -  1 )  =  ( L  - 
1 ) )
130129adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  ( L  -  1 ) )
131120nncnd 9778 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  CC )
132 ax-1cn 8811 . . . . . . . . . . . . . 14  |-  1  e.  CC
133132a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
134 elfzoelz 10891 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  ->  I  e.  ZZ )
13536, 134syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  ZZ )
136135zcnd 10134 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  CC )
137131, 133, 136subadd2d 9192 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( L  - 
1 )  =  I  <-> 
( I  +  1 )  =  L ) )
138137biimpar 471 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( L  -  1 )  =  I )
139130, 138eqtrd 2328 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  I )
140 opeq2 3813 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <. 0 ,  ( ( # `  W )  -  1 ) >.  =  <. 0 ,  I >. )
141140oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( W substr  <. 0 ,  I >. ) )
142 fveq2 5541 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  I
) )
143142s1eqd 11456 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <" ( W `  ( ( # `
 W )  - 
1 ) ) ">  =  <" ( W `  I ) "> )
144141, 143oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) concat  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
145139, 144syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) concat  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
146128, 145eqtrd 2328 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
147146oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) ) )
14842s1cld 11458 . . . . . . . . 9  |-  ( ph  ->  <" ( W `
 I ) ">  e. Word  ( Base `  G ) )
149 eqid 2296 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
15020, 149gsumccat 14480 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G )  /\  <" ( W `  I ) ">  e. Word  ( Base `  G
) )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15118, 27, 148, 150syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
152151adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15320gsumws1 14478 . . . . . . . . . . 11  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( G  gsumg  <" ( W `  I ) "> )  =  ( W `  I ) )
15442, 153syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg 
<" ( W `  I ) "> )  =  ( W `  I ) )
155154oveq2d 5890 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) ) )
15615, 20, 149symgov 14793 . . . . . . . . . 10  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  ( W `  I )  e.  (
Base `  G )
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( W `  I
) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
15729, 42, 156syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
158155, 157eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
159158adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( G  gsumg 
<" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
160147, 152, 1593eqtrd 2332 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
161160difeq1d 3306 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  W )  \  _I  )  =  ( (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
162161dmeqd 4897 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  dom  ( ( G  gsumg  W ) 
\  _I  )  =  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
163116, 162eleqtrrd 2373 . . 3  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( G 
gsumg  W )  \  _I  ) )
16413, 163mtand 640 . 2  |-  ( ph  ->  -.  ( I  + 
1 )  =  L )
165 fzostep1 10938 . . . 4  |-  ( I  e.  ( 0..^ L )  ->  ( (
I  +  1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
16636, 165syl 15 . . 3  |-  ( ph  ->  ( ( I  + 
1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
167166ord 366 . 2  |-  ( ph  ->  ( -.  ( I  +  1 )  e.  ( 0..^ L )  ->  ( I  + 
1 )  =  L ) )
168164, 167mt3d 117 1  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/_ wxo 1295    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   class class class wbr 4039    e. cmpt 4093    _I cid 4320   dom cdm 4705   ran crn 4706    |` cres 4707    o. ccom 4709   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    < clt 8883    - cmin 9053   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798  ..^cfzo 10886   #chash 11353  Word cword 11419   concat cconcat 11420   <"cs1 11421   substr csubstr 11422   Basecbs 13164   +g cplusg 13224    gsumg cgsu 13417   Mndcmnd 14377   Grpcgrp 14378  SubMndcsubmnd 14430  SubGrpcsubg 14631   SymGrpcsymg 14785  pmTrspcpmtr 27487
This theorem is referenced by:  psgnunilem2  27521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-substr 11428  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-tset 13243  df-0g 13420  df-gsum 13421  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-subg 14634  df-symg 14786  df-pmtr 27488
  Copyright terms: Public domain W3C validator