Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnunilem5 Structured version   Unicode version

Theorem psgnunilem5 27375
Description: Lemma for psgnuni 27380. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving  A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g  |-  G  =  ( SymGrp `  D )
psgnunilem2.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem2.d  |-  ( ph  ->  D  e.  V )
psgnunilem2.w  |-  ( ph  ->  W  e. Word  T )
psgnunilem2.id  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem2.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem2.ix  |-  ( ph  ->  I  e.  ( 0..^ L ) )
psgnunilem2.a  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
psgnunilem2.al  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
Assertion
Ref Expression
psgnunilem5  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Distinct variable groups:    A, k    k, G    k, I    k, W
Allowed substitution hints:    ph( k)    D( k)    T( k)    L( k)    V( k)

Proof of Theorem psgnunilem5
Dummy variables  j 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3624 . . . 4  |-  -.  A  e.  (/)
2 psgnunilem2.id . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
32difeq1d 3456 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) 
\  _I  )  =  ( (  _I  |`  D ) 
\  _I  ) )
43dmeqd 5064 . . . . . 6  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  dom  ( (  _I  |`  D )  \  _I  ) )
5 resss 5162 . . . . . . . . 9  |-  (  _I  |`  D )  C_  _I
6 ssdif0 3678 . . . . . . . . 9  |-  ( (  _I  |`  D )  C_  _I  <->  ( (  _I  |`  D )  \  _I  )  =  (/) )
75, 6mpbi 200 . . . . . . . 8  |-  ( (  _I  |`  D )  \  _I  )  =  (/)
87dmeqi 5063 . . . . . . 7  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  dom  (/)
9 dm0 5075 . . . . . . 7  |-  dom  (/)  =  (/)
108, 9eqtri 2455 . . . . . 6  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  (/)
114, 10syl6eq 2483 . . . . 5  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  (/) )
1211eleq2d 2502 . . . 4  |-  ( ph  ->  ( A  e.  dom  ( ( G  gsumg  W ) 
\  _I  )  <->  A  e.  (/) ) )
131, 12mtbiri 295 . . 3  |-  ( ph  ->  -.  A  e.  dom  ( ( G  gsumg  W ) 
\  _I  ) )
14 psgnunilem2.d . . . . . . . . 9  |-  ( ph  ->  D  e.  V )
15 psgnunilem2.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
1615symggrp 15095 . . . . . . . . 9  |-  ( D  e.  V  ->  G  e.  Grp )
17 grpmnd 14809 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
1814, 16, 173syl 19 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
19 psgnunilem2.t . . . . . . . . . . . 12  |-  T  =  ran  (pmTrsp `  D
)
20 eqid 2435 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
2119, 15, 20symgtrf 27368 . . . . . . . . . . 11  |-  T  C_  ( Base `  G )
22 sswrd 11729 . . . . . . . . . . 11  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
2321, 22mp1i 12 . . . . . . . . . 10  |-  ( ph  -> Word  T  C_ Word  ( Base `  G
) )
24 psgnunilem2.w . . . . . . . . . 10  |-  ( ph  ->  W  e. Word  T )
2523, 24sseldd 3341 . . . . . . . . 9  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
26 swrdcl 11758 . . . . . . . . 9  |-  ( W  e. Word  ( Base `  G
)  ->  ( W substr  <.
0 ,  I >. )  e. Word  ( Base `  G
) )
2725, 26syl 16 . . . . . . . 8  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )
2820gsumwcl 14778 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G ) )
2918, 27, 28syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
) )
3015, 20elsymgbas2 15088 . . . . . . . 8  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  <->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D ) )
3130ibi 233 . . . . . . 7  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D
)
3229, 31syl 16 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
3332adantr 452 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
34 wrdf 11725 . . . . . . . . . 10  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
3524, 34syl 16 . . . . . . . . 9  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
36 psgnunilem2.ix . . . . . . . . . 10  |-  ( ph  ->  I  e.  ( 0..^ L ) )
37 psgnunilem2.l . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  =  L )
3837oveq2d 6089 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
3936, 38eleqtrrd 2512 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
4035, 39ffvelrnd 5863 . . . . . . . 8  |-  ( ph  ->  ( W `  I
)  e.  T )
4121, 40sseldi 3338 . . . . . . 7  |-  ( ph  ->  ( W `  I
)  e.  ( Base `  G ) )
4215, 20elsymgbas2 15088 . . . . . . . 8  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( ( W `  I )  e.  ( Base `  G
)  <->  ( W `  I ) : D -1-1-onto-> D
) )
4342ibi 233 . . . . . . 7  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( W `  I ) : D -1-1-onto-> D
)
4441, 43syl 16 . . . . . 6  |-  ( ph  ->  ( W `  I
) : D -1-1-onto-> D )
4544adantr 452 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W `  I ) : D -1-1-onto-> D )
4615, 20symgsssg 27366 . . . . . . . . . . . 12  |-  ( D  e.  V  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G ) )
47 subgsubm 14954 . . . . . . . . . . . 12  |-  ( { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G
)  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
4814, 46, 473syl 19 . . . . . . . . . . 11  |-  ( ph  ->  { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G ) )
4948adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
50 fzossfz 11149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0..^ L )  C_  (
0 ... L )
5150, 36sseldi 3338 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  ( 0 ... L ) )
52 elfzuz3 11048 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 0 ... L )  ->  L  e.  ( ZZ>= `  I )
)
5351, 52syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  L  e.  ( ZZ>= `  I ) )
5437, 53eqeltrd 2509 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= `  I ) )
55 fzoss2 11155 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  e.  ( ZZ>= `  I )  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5654, 55syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5756sselda 3340 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  s  e.  ( 0..^ ( # `  W
) ) )
5835ffvelrnda 5862 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  T )
5921, 58sseldi 3338 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  ( Base `  G ) )
6057, 59syldan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  (
Base `  G )
)
61 psgnunilem2.al . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
62 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  s  ->  ( W `  k )  =  ( W `  s ) )
6362difeq1d 3456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  s  ->  (
( W `  k
)  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6463dmeqd 5064 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  s  ->  dom  ( ( W `  k )  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
6564eleq2d 2502 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  s  ->  ( A  e.  dom  ( ( W `  k ) 
\  _I  )  <->  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6665notbid 286 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  s  ->  ( -.  A  e.  dom  ( ( W `  k )  \  _I  ) 
<->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6766cbvralv 2924 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( 0..^ I )  -.  A  e.  dom  ( ( W `
 k )  \  _I  )  <->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6861, 67sylib 189 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6968r19.21bi 2796 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) )
70 difeq1 3450 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( W `  s )  ->  (
j  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
7170dmeqd 5064 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( W `  s )  ->  dom  ( j  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
7271sseq1d 3367 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( W `  s ) 
\  _I  )  C_  ( _V  \  { A } ) ) )
73 disj2 3667 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } ) )
74 disjsn 3860 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( W `  s ) 
\  _I  ) )
7573, 74bitr3i 243 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) )
7672, 75syl6bb 253 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7776elrab 3084 . . . . . . . . . . . . . . 15  |-  ( ( W `  s )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  <->  ( ( W `  s )  e.  ( Base `  G
)  /\  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7860, 69, 77sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  {
j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
79 eqid 2435 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )
8078, 79fmptd 5885 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
8137oveq2d 6089 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ... ( # `
 W ) )  =  ( 0 ... L ) )
8251, 81eleqtrrd 2512 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ( 0 ... ( # `  W
) ) )
83 swrd0val 11760 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  T  /\  I  e.  ( 0 ... ( # `  W
) ) )  -> 
( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8424, 82, 83syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8535feqmptd 5771 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  =  ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) ) )
8685reseq1d 5137 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W  |`  (
0..^ I ) )  =  ( ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) )  |`  ( 0..^ I ) ) )
87 resmpt 5183 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ I )  C_  ( 0..^ ( # `  W
) )  ->  (
( s  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8854, 55, 873syl 19 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( s  e.  ( 0..^ ( # `  W ) )  |->  ( W `  s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8984, 86, 883eqtrd 2471 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( s  e.  ( 0..^ I )  |->  ( W `
 s ) ) )
9089feq1d 5572 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  <-> 
( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } ) )
9180, 90mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
9291adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
93 iswrdi 11723 . . . . . . . . . . 11  |-  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9492, 93syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
95 gsumwsubmcl 14776 . . . . . . . . . 10  |-  ( ( { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G )  /\  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9649, 94, 95syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) } )
97 difeq1 3450 . . . . . . . . . . . . . 14  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( j  \  _I  )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )
)
9897dmeqd 5064 . . . . . . . . . . . . 13  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  dom  ( j 
\  _I  )  =  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
9998sseq1d 3367 . . . . . . . . . . . 12  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
10099elrab 3084 . . . . . . . . . . 11  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  <->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
101100simprbi 451 . . . . . . . . . 10  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
102 disj2 3667 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
103 disjsn 3860 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
104102, 103bitr3i 243 . . . . . . . . . 10  |-  ( dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
105101, 104sylib 189 . . . . . . . . 9  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10696, 105syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
107 psgnunilem2.a . . . . . . . . 9  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
108107adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( W `
 I )  \  _I  ) )
109106, 108jca 519 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) )
110109olcd 383 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `  I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
111 excxor 1318 . . . . . 6  |-  ( ( A  e.  dom  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) )  <->  ( ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `
 I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
112110, 111sylibr 204 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )
113 f1omvdco3 27350 . . . . 5  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D  /\  ( W `
 I ) : D -1-1-onto-> D  /\  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11433, 45, 112, 113syl3anc 1184 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11524adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  e. Word  T )
116 elfzo0 11163 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  <->  ( I  e. 
NN0  /\  L  e.  NN  /\  I  <  L
) )
117116simp2bi 973 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 0..^ L )  ->  L  e.  NN )
11836, 117syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  NN )
11937, 118eqeltrd 2509 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  W
)  e.  NN )
120 wrdfin 11726 . . . . . . . . . . . . 13  |-  ( W  e. Word  T  ->  W  e.  Fin )
121 hashnncl 11637 . . . . . . . . . . . . 13  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
12224, 120, 1213syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  e.  NN  <->  W  =/=  (/) ) )
123119, 122mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  W  =/=  (/) )
124123adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =/=  (/) )
125 wrdeqcats1 11780 . . . . . . . . . 10  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) concat  <" ( W `
 ( ( # `  W )  -  1 ) ) "> ) )
126115, 124, 125syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) concat  <" ( W `
 ( ( # `  W )  -  1 ) ) "> ) )
12737oveq1d 6088 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  -  1 )  =  ( L  - 
1 ) )
128127adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  ( L  -  1 ) )
129118nncnd 10008 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  CC )
130 ax-1cn 9040 . . . . . . . . . . . . . 14  |-  1  e.  CC
131130a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
132 elfzoelz 11132 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  ->  I  e.  ZZ )
13336, 132syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  ZZ )
134133zcnd 10368 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  CC )
135129, 131, 134subadd2d 9422 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( L  - 
1 )  =  I  <-> 
( I  +  1 )  =  L ) )
136135biimpar 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( L  -  1 )  =  I )
137128, 136eqtrd 2467 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  I )
138 opeq2 3977 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <. 0 ,  ( ( # `  W )  -  1 ) >.  =  <. 0 ,  I >. )
139138oveq2d 6089 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( W substr  <. 0 ,  I >. ) )
140 fveq2 5720 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  I
) )
141140s1eqd 11746 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <" ( W `  ( ( # `
 W )  - 
1 ) ) ">  =  <" ( W `  I ) "> )
142139, 141oveq12d 6091 . . . . . . . . . 10  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) concat  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
143137, 142syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) concat  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
144126, 143eqtrd 2467 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )
145144oveq2d 6089 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) ) )
14641s1cld 11748 . . . . . . . . 9  |-  ( ph  ->  <" ( W `
 I ) ">  e. Word  ( Base `  G ) )
147 eqid 2435 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
14820, 147gsumccat 14779 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G )  /\  <" ( W `  I ) ">  e. Word  ( Base `  G
) )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
14918, 27, 146, 148syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
150149adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) concat  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15120gsumws1 14777 . . . . . . . . . . 11  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( G  gsumg  <" ( W `  I ) "> )  =  ( W `  I ) )
15241, 151syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg 
<" ( W `  I ) "> )  =  ( W `  I ) )
153152oveq2d 6089 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) ) )
15415, 20, 147symgov 15092 . . . . . . . . . 10  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  ( W `  I )  e.  (
Base `  G )
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( W `  I
) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
15529, 41, 154syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
156153, 155eqtrd 2467 . . . . . . . 8  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
157156adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( G  gsumg 
<" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
158145, 150, 1573eqtrd 2471 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
159158difeq1d 3456 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  W )  \  _I  )  =  ( (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
160159dmeqd 5064 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  dom  ( ( G  gsumg  W ) 
\  _I  )  =  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
161114, 160eleqtrrd 2512 . . 3  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( G 
gsumg  W )  \  _I  ) )
16213, 161mtand 641 . 2  |-  ( ph  ->  -.  ( I  + 
1 )  =  L )
163 fzostep1 11189 . . . 4  |-  ( I  e.  ( 0..^ L )  ->  ( (
I  +  1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
16436, 163syl 16 . . 3  |-  ( ph  ->  ( ( I  + 
1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
165164ord 367 . 2  |-  ( ph  ->  ( -.  ( I  +  1 )  e.  ( 0..^ L )  ->  ( I  + 
1 )  =  L ) )
166162, 165mt3d 119 1  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/_ wxo 1313    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   <.cop 3809   class class class wbr 4204    e. cmpt 4258    _I cid 4485   dom cdm 4870   ran crn 4871    |` cres 4872    o. ccom 4874   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    - cmin 9283   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  ..^cfzo 11127   #chash 11610  Word cword 11709   concat cconcat 11710   <"cs1 11711   substr csubstr 11712   Basecbs 13461   +g cplusg 13521    gsumg cgsu 13716   Mndcmnd 14676   Grpcgrp 14677  SubMndcsubmnd 14729  SubGrpcsubg 14930   SymGrpcsymg 15084  pmTrspcpmtr 27342
This theorem is referenced by:  psgnunilem2  27376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-xor 1314  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-word 11715  df-concat 11716  df-s1 11717  df-substr 11718  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-tset 13540  df-0g 13719  df-gsum 13720  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-subg 14933  df-symg 15085  df-pmtr 27343
  Copyright terms: Public domain W3C validator