MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pslem Unicode version

Theorem pslem 14565
Description: Lemma for psref 14567 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
pslem  |-  ( R  e.  PosetRel  ->  ( ( ( A R B  /\  B R C )  ->  A R C )  /\  ( A  e.  U. U. R  ->  A R A )  /\  ( ( A R B  /\  B R A )  ->  A  =  B )
) )

Proof of Theorem pslem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrel 14562 . . . . . 6  |-  ( R  e.  PosetRel  ->  Rel  R )
2 brrelex12 4855 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
31, 2sylan 458 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
4 brrelex2 4857 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  C  e.  _V )
51, 4sylan 458 . . . . 5  |-  ( ( R  e.  PosetRel  /\  B R C )  ->  C  e.  _V )
63, 5anim12dan 811 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R C ) )  -> 
( ( A  e. 
_V  /\  B  e.  _V )  /\  C  e. 
_V ) )
7 pstr2 14564 . . . . . 6  |-  ( R  e.  PosetRel  ->  ( R  o.  R )  C_  R
)
8 cotr 5186 . . . . . 6  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
97, 8sylib 189 . . . . 5  |-  ( R  e.  PosetRel  ->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
109adantr 452 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R C ) )  ->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
11 simpr 448 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R C ) )  -> 
( A R B  /\  B R C ) )
12 breq12 4158 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x R y  <-> 
A R B ) )
13123adant3 977 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R y  <-> 
A R B ) )
14 breq12 4158 . . . . . . . . 9  |-  ( ( y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
15143adant1 975 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
1613, 15anbi12d 692 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x R y  /\  y R z )  <->  ( A R B  /\  B R C ) ) )
17 breq12 4158 . . . . . . . 8  |-  ( ( x  =  A  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
18173adant2 976 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
1916, 18imbi12d 312 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x R y  /\  y R z )  ->  x R z )  <->  ( ( A R B  /\  B R C )  ->  A R C ) ) )
2019spc3gv 2984 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( A R B  /\  B R C )  ->  A R C ) ) )
21203expa 1153 . . . 4  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  C  e.  _V )  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z )  ->  (
( A R B  /\  B R C )  ->  A R C ) ) )
226, 10, 11, 21syl3c 59 . . 3  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R C ) )  ->  A R C )
2322ex 424 . 2  |-  ( R  e.  PosetRel  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
24 psref2 14563 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  `' R )  =  (  _I  |`  U. U. R
) )
25 asymref2 5191 . . . 4  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <-> 
( A. x  e. 
U. U. R x R x  /\  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
) )
2625simplbi 447 . . 3  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  ->  A. x  e.  U. U. R x R x )
27 breq12 4158 . . . . 5  |-  ( ( x  =  A  /\  x  =  A )  ->  ( x R x  <-> 
A R A ) )
2827anidms 627 . . . 4  |-  ( x  =  A  ->  (
x R x  <->  A R A ) )
2928rspccv 2992 . . 3  |-  ( A. x  e.  U. U. R x R x  ->  ( A  e.  U. U. R  ->  A R A ) )
3024, 26, 293syl 19 . 2  |-  ( R  e.  PosetRel  ->  ( A  e. 
U. U. R  ->  A R A ) )
313adantrr 698 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R A ) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
3225simprbi 451 . . . . . 6  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  ->  A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
3324, 32syl 16 . . . . 5  |-  ( R  e.  PosetRel  ->  A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
3433adantr 452 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R A ) )  ->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y ) )
35 simpr 448 . . . 4  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R A ) )  -> 
( A R B  /\  B R A ) )
36 breq12 4158 . . . . . . . 8  |-  ( ( y  =  B  /\  x  =  A )  ->  ( y R x  <-> 
B R A ) )
3736ancoms 440 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y R x  <-> 
B R A ) )
3812, 37anbi12d 692 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x R y  /\  y R x )  <->  ( A R B  /\  B R A ) ) )
39 eqeq12 2399 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  =  y  <-> 
A  =  B ) )
4038, 39imbi12d 312 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( x R y  /\  y R x )  ->  x  =  y )  <->  ( ( A R B  /\  B R A )  ->  A  =  B ) ) )
4140spc2gv 2982 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )  ->  ( ( A R B  /\  B R A )  ->  A  =  B ) ) )
4231, 34, 35, 41syl3c 59 . . 3  |-  ( ( R  e.  PosetRel  /\  ( A R B  /\  B R A ) )  ->  A  =  B )
4342ex 424 . 2  |-  ( R  e.  PosetRel  ->  ( ( A R B  /\  B R A )  ->  A  =  B ) )
4423, 30, 433jca 1134 1  |-  ( R  e.  PosetRel  ->  ( ( ( A R B  /\  B R C )  ->  A R C )  /\  ( A  e.  U. U. R  ->  A R A )  /\  ( ( A R B  /\  B R A )  ->  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899    i^i cin 3262    C_ wss 3263   U.cuni 3957   class class class wbr 4153    _I cid 4434   `'ccnv 4817    |` cres 4820    o. ccom 4822   Rel wrel 4823   PosetRelcps 14551
This theorem is referenced by:  psdmrn  14566  psref  14567  psasym  14569  pstr  14570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-res 4830  df-ps 14556
  Copyright terms: Public domain W3C validator