MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Unicode version

Theorem psrass1lem 16123
Description: A group sum commutation used by psrass1 16150. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  o R  <_  F }
gsumbagdiag.i  |-  ( ph  ->  I  e.  V )
gsumbagdiag.f  |-  ( ph  ->  F  e.  D )
gsumbagdiag.b  |-  B  =  ( Base `  G
)
gsumbagdiag.g  |-  ( ph  ->  G  e. CMnd )
gsumbagdiag.x  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  X  e.  B )
psrass1lem.y  |-  ( k  =  ( n  o F  -  j )  ->  X  =  Y )
Assertion
Ref Expression
psrass1lem  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) ) ) ) )
Distinct variable groups:    f, j,
k, n, x, y, F    f, G, j, k, n, x, y   
n, V, x, y   
f, I, n, x, y    ph, j, k    S, j, k, n, x    B, j, k    D, j, k, n, x, y    f, X, n, x, y    f, Y, k, x, y
Allowed substitution hints:    ph( x, y, f, n)    B( x, y, f, n)    D( f)    S( y, f)    I( j, k)    V( f, j, k)    X( j, k)    Y( j, n)

Proof of Theorem psrass1lem
Dummy variables  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 psrbagconf1o.1 . . . 4  |-  S  =  { y  e.  D  |  y  o R  <_  F }
3 gsumbagdiag.i . . . 4  |-  ( ph  ->  I  e.  V )
4 gsumbagdiag.f . . . 4  |-  ( ph  ->  F  e.  D )
5 gsumbagdiag.b . . . 4  |-  B  =  ( Base `  G
)
6 gsumbagdiag.g . . . 4  |-  ( ph  ->  G  e. CMnd )
71, 2, 3, 4gsumbagdiaglem 16121 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  (
j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } ) )
8 gsumbagdiag.x . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  X  e.  B )
98anassrs 629 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  X  e.  B )
10 eqid 2283 . . . . . . . . . . 11  |-  ( k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )  =  ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X )
119, 10fmptd 5684 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B )
123adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  I  e.  V )
13 ssrab2 3258 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  o R  <_  F }  C_  D
142, 13eqsstri 3208 . . . . . . . . . . . . 13  |-  S  C_  D
154adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  F  e.  D )
16 simpr 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  j  e.  S )
171, 2psrbagconcl 16119 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  F  e.  D  /\  j  e.  S )  ->  ( F  o F  -  j )  e.  S )
1812, 15, 16, 17syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  S )  ->  ( F  o F  -  j
)  e.  S )
1914, 18sseldi 3178 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  ( F  o F  -  j
)  e.  D )
20 eqid 2283 . . . . . . . . . . . . 13  |-  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  =  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }
211, 20psrbagconf1o 16120 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( F  o F  -  j )  e.  D )  ->  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } -1-1-onto-> { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )
2212, 19, 21syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } -1-1-onto-> { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )
23 f1of 5472 . . . . . . . . . . 11  |-  ( ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } -1-1-onto-> { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) }  ->  ( m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  ( ( F  o F  -  j )  o F  -  m
) ) : {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
2422, 23syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
25 fco 5398 . . . . . . . . . 10  |-  ( ( ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B  /\  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  -> 
( ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B )
2611, 24, 25syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  ( ( F  o F  -  j )  o F  -  m
) ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } --> B )
2712adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  I  e.  V )
2815adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  F  e.  D )
291psrbagf 16113 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F : I --> NN0 )
3027, 28, 29syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  F :
I --> NN0 )
31 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( F : I --> NN0  /\  z  e.  I )  ->  ( F `  z
)  e.  NN0 )
3230, 31sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( F `  z
)  e.  NN0 )
3316adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  j  e.  S )
3414, 33sseldi 3178 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  j  e.  D )
351psrbagf 16113 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  j  e.  D )  ->  j : I --> NN0 )
3627, 34, 35syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  j :
I --> NN0 )
37 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( j : I --> NN0  /\  z  e.  I )  ->  ( j `  z
)  e.  NN0 )
3836, 37sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( j `  z
)  e.  NN0 )
39 ssrab2 3258 . . . . . . . . . . . . . . . . . 18  |-  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  C_  D
40 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
4139, 40sseldi 3178 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  m  e.  D )
421psrbagf 16113 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  m  e.  D )  ->  m : I --> NN0 )
4327, 41, 42syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  m :
I --> NN0 )
44 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( m : I --> NN0  /\  z  e.  I )  ->  ( m `  z
)  e.  NN0 )
4543, 44sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( m `  z
)  e.  NN0 )
46 nn0cn 9975 . . . . . . . . . . . . . . . 16  |-  ( ( F `  z )  e.  NN0  ->  ( F `
 z )  e.  CC )
47 nn0cn 9975 . . . . . . . . . . . . . . . 16  |-  ( ( j `  z )  e.  NN0  ->  ( j `
 z )  e.  CC )
48 nn0cn 9975 . . . . . . . . . . . . . . . 16  |-  ( ( m `  z )  e.  NN0  ->  ( m `
 z )  e.  CC )
49 sub32 9081 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  e.  CC  /\  ( j `  z
)  e.  CC  /\  ( m `  z
)  e.  CC )  ->  ( ( ( F `  z )  -  ( j `  z ) )  -  ( m `  z
) )  =  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) )
5046, 47, 48, 49syl3an 1224 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  z
)  e.  NN0  /\  ( j `  z
)  e.  NN0  /\  ( m `  z
)  e.  NN0 )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
5132, 38, 45, 50syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
5251mpteq2dva 4106 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( z  e.  I  |->  ( ( ( F `  z
)  -  ( j `
 z ) )  -  ( m `  z ) ) )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  ( m `  z ) )  -  ( j `  z
) ) ) )
53 ovex 5883 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( j `  z ) )  e. 
_V
5453a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
j `  z )
)  e.  _V )
5530feqmptd 5575 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  F  =  ( z  e.  I  |->  ( F `  z
) ) )
5636feqmptd 5575 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  j  =  ( z  e.  I  |->  ( j `  z
) ) )
5727, 32, 38, 55, 56offval2 6095 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( F  o F  -  j
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( j `  z ) ) ) )
5843feqmptd 5575 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  m  =  ( z  e.  I  |->  ( m `  z
) ) )
5927, 54, 45, 57, 58offval2 6095 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  j
)  o F  -  m )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
j `  z )
)  -  ( m `
 z ) ) ) )
60 ovex 5883 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( m `  z ) )  e. 
_V
6160a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
m `  z )
)  e.  _V )
6227, 32, 45, 55, 58offval2 6095 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( F  o F  -  m
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( m `  z ) ) ) )
6327, 61, 38, 62, 56offval2 6095 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  m
)  o F  -  j )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) ) )
6452, 59, 633eqtr4d 2325 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  j
)  o F  -  m )  =  ( ( F  o F  -  m )  o F  -  j ) )
6519adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( F  o F  -  j
)  e.  D )
661, 20psrbagconcl 16119 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  ( F  o F  -  j )  e.  D  /\  m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  j
)  o F  -  m )  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
6727, 65, 40, 66syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  j
)  o F  -  m )  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
6864, 67eqeltrrd 2358 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  ( ( F  o F  -  m
)  o F  -  j )  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )
6964mpteq2dva 4106 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) )  =  ( m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  ( ( F  o F  -  m )  o F  -  j
) ) )
70 nfcv 2419 . . . . . . . . . . . . 13  |-  F/_ n X
71 nfcsb1v 3113 . . . . . . . . . . . . 13  |-  F/_ k [_ n  /  k ]_ X
72 csbeq1a 3089 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  X  =  [_ n  /  k ]_ X )
7370, 71, 72cbvmpt 4110 . . . . . . . . . . . 12  |-  ( k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  [_ n  /  k ]_ X )
7473a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  [_ n  /  k ]_ X ) )
75 csbeq1 3084 . . . . . . . . . . 11  |-  ( n  =  ( ( F  o F  -  m
)  o F  -  j )  ->  [_ n  /  k ]_ X  =  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X )
7668, 69, 74, 75fmptco 5691 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  ( ( F  o F  -  j )  o F  -  m
) ) )  =  ( m  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )
7776feq1d 5379 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) ) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B  <->  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B ) )
7826, 77mpbid 201 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) : { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B )
79 eqid 2283 . . . . . . . . 9  |-  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)  =  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)
8079fmpt 5681 . . . . . . . 8  |-  ( A. m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X  e.  B  <->  ( m  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } --> B )
8178, 80sylibr 203 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  A. m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) }
[_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X  e.  B
)
8281r19.21bi 2641 . . . . . 6  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  ->  [_ ( ( F  o F  -  m )  o F  -  j )  / 
k ]_ X  e.  B
)
8382anasss 628 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X  e.  B )
847, 83syldan 456 . . . 4  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X  e.  B )
851, 2, 3, 4, 5, 6, 84gsumbagdiag 16122 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )
86 eqid 2283 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
871psrbaglefi 16118 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  o R  <_  F }  e.  Fin )
883, 4, 87syl2anc 642 . . . . 5  |-  ( ph  ->  { y  e.  D  |  y  o R  <_  F }  e.  Fin )
892, 88syl5eqel 2367 . . . 4  |-  ( ph  ->  S  e.  Fin )
903adantr 451 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  I  e.  V )
914adantr 451 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  F  e.  D )
92 simpr 447 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  m  e.  S )
931, 2psrbagconcl 16119 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D  /\  m  e.  S )  ->  ( F  o F  -  m )  e.  S )
9490, 91, 92, 93syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  m  e.  S )  ->  ( F  o F  -  m
)  e.  S )
9514, 94sseldi 3178 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  ( F  o F  -  m
)  e.  D )
961psrbaglefi 16118 . . . . 5  |-  ( ( I  e.  V  /\  ( F  o F  -  m )  e.  D
)  ->  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  e.  Fin )
9790, 95, 96syl2anc 642 . . . 4  |-  ( (
ph  /\  m  e.  S )  ->  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  e.  Fin )
98 xpfi 7128 . . . . 5  |-  ( ( S  e.  Fin  /\  S  e.  Fin )  ->  ( S  X.  S
)  e.  Fin )
9989, 89, 98syl2anc 642 . . . 4  |-  ( ph  ->  ( S  X.  S
)  e.  Fin )
100 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  m  e.  S )
1017simpld 445 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  j  e.  S )
102 brxp 4720 . . . . . . 7  |-  ( m ( S  X.  S
) j  <->  ( m  e.  S  /\  j  e.  S ) )
103100, 101, 102sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  m
( S  X.  S
) j )
104103pm2.24d 135 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } ) )  ->  ( -.  m ( S  X.  S ) j  ->  [_ ( ( F  o F  -  m )  o F  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
105104impr 602 . . . 4  |-  ( (
ph  /\  ( (
m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) } )  /\  -.  m ( S  X.  S ) j ) )  ->  [_ ( ( F  o F  -  m )  o F  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1065, 86, 6, 89, 97, 84, 99, 105gsum2d2 15225 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
1071psrbaglefi 16118 . . . . 5  |-  ( ( I  e.  V  /\  ( F  o F  -  j )  e.  D )  ->  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  e.  Fin )
10812, 19, 107syl2anc 642 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  e.  Fin )
109 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  j  e.  S )
1101, 2, 3, 4gsumbagdiaglem 16121 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  (
m  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) } ) )
111110simpld 445 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  m  e.  S )
112 brxp 4720 . . . . . . 7  |-  ( j ( S  X.  S
) m  <->  ( j  e.  S  /\  m  e.  S ) )
113109, 111, 112sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  j
( S  X.  S
) m )
114113pm2.24d 135 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  ( -.  j ( S  X.  S ) m  ->  [_ ( ( F  o F  -  m )  o F  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
115114impr 602 . . . 4  |-  ( (
ph  /\  ( (
j  e.  S  /\  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  -.  j ( S  X.  S ) m ) )  ->  [_ ( ( F  o F  -  m )  o F  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1165, 86, 6, 89, 108, 83, 99, 115gsum2d2 15225 . . 3  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
11785, 106, 1163eqtr3d 2323 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
1186adantr 451 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  G  e. CMnd )
11984anassrs 629 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  S )  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } )  ->  [_ ( ( F  o F  -  m )  o F  -  j )  / 
k ]_ X  e.  B
)
120 eqid 2283 . . . . . . . . 9  |-  ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)  =  ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)
121119, 120fmptd 5684 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) : { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) } --> B )
122 cnvimass 5033 . . . . . . . . . 10  |-  ( `' ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) " ( _V 
\  { ( 0g
`  G ) } ) )  C_  dom  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)
123120dmmptss 5169 . . . . . . . . . 10  |-  dom  (
j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)  C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }
124122, 123sstri 3188 . . . . . . . . 9  |-  ( `' ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) " ( _V 
\  { ( 0g
`  G ) } ) )  C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }
125 ssfi 7083 . . . . . . . . 9  |-  ( ( { x  e.  D  |  x  o R  <_  ( F  o F  -  m ) }  e.  Fin  /\  ( `' ( j  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } 
|->  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X ) " ( _V  \  { ( 0g
`  G ) } ) )  C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) } )  -> 
( `' ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) " ( _V 
\  { ( 0g
`  G ) } ) )  e.  Fin )
12697, 124, 125sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  ( `' ( j  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  m ) } 
|->  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X ) " ( _V  \  { ( 0g
`  G ) } ) )  e.  Fin )
1275, 86, 118, 97, 121, 126gsumcl 15198 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )  e.  B
)
128 eqid 2283 . . . . . . 7  |-  ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )
129127, 128fmptd 5684 . . . . . 6  |-  ( ph  ->  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) : S --> B )
1301, 2psrbagconf1o 16120 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S )
1313, 4, 130syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S )
132 f1ocnv 5485 . . . . . . 7  |-  ( ( m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S )
133 f1of 5472 . . . . . . 7  |-  ( `' ( m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  o F  -  m ) ) : S --> S )
134131, 132, 1333syl 18 . . . . . 6  |-  ( ph  ->  `' ( m  e.  S  |->  ( F  o F  -  m )
) : S --> S )
135 fco 5398 . . . . . 6  |-  ( ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) : S --> B  /\  `' ( m  e.  S  |->  ( F  o F  -  m ) ) : S --> S )  ->  ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) ) : S --> B )
136129, 134, 135syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) ) : S --> B )
137 coass 5191 . . . . . . . 8  |-  ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  o F  -  m ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) ) )
138 f1ococnv2 5500 . . . . . . . . . 10  |-  ( ( m  e.  S  |->  ( F  o F  -  m ) ) : S -1-1-onto-> S  ->  ( (
m  e.  S  |->  ( F  o F  -  m ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) )  =  (  _I  |`  S )
)
139131, 138syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( m  e.  S  |->  ( F  o F  -  m )
)  o.  `' ( m  e.  S  |->  ( F  o F  -  m ) ) )  =  (  _I  |`  S ) )
140139coeq2d 4846 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  o F  -  m
) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m ) ) ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
141137, 140syl5eq 2327 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
142 eqidd 2284 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  S  |->  ( F  o F  -  m ) )  =  ( m  e.  S  |->  ( F  o F  -  m )
) )
143 eqidd 2284 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )
144 breq2 4027 . . . . . . . . . . . 12  |-  ( n  =  ( F  o F  -  m )  ->  ( x  o R  <_  n  <->  x  o R  <_  ( F  o F  -  m )
) )
145144rabbidv 2780 . . . . . . . . . . 11  |-  ( n  =  ( F  o F  -  m )  ->  { x  e.  D  |  x  o R  <_  n }  =  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) } )
146 ovex 5883 . . . . . . . . . . . . 13  |-  ( n  o F  -  j
)  e.  _V
147 nfcv 2419 . . . . . . . . . . . . 13  |-  F/_ k Y
148 psrass1lem.y . . . . . . . . . . . . 13  |-  ( k  =  ( n  o F  -  j )  ->  X  =  Y )
149146, 147, 148csbief 3122 . . . . . . . . . . . 12  |-  [_ (
n  o F  -  j )  /  k ]_ X  =  Y
150 oveq1 5865 . . . . . . . . . . . . 13  |-  ( n  =  ( F  o F  -  m )  ->  ( n  o F  -  j )  =  ( ( F  o F  -  m )  o F  -  j
) )
151150csbeq1d 3087 . . . . . . . . . . . 12  |-  ( n  =  ( F  o F  -  m )  ->  [_ ( n  o F  -  j )  /  k ]_ X  =  [_ ( ( F  o F  -  m
)  o F  -  j )  /  k ]_ X )
152149, 151syl5eqr 2329 . . . . . . . . . . 11  |-  ( n  =  ( F  o F  -  m )  ->  Y  =  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
)
153145, 152mpteq12dv 4098 . . . . . . . . . 10  |-  ( n  =  ( F  o F  -  m )  ->  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y )  =  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) )
154153oveq2d 5874 . . . . . . . . 9  |-  ( n  =  ( F  o F  -  m )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) )  =  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )
15594, 142, 143, 154fmptco 5691 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m )
) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) )
156155coeq1d 4845 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) )  =  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) ) )
157 coires1 5190 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  |`  S )
158 ssid 3197 . . . . . . . . . 10  |-  S  C_  S
159 resmpt 5000 . . . . . . . . . 10  |-  ( S 
C_  S  ->  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )
160158, 159ax-mp 8 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )
161157, 160eqtri 2303 . . . . . . . 8  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )
162161a1i 10 . . . . . . 7  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )
163141, 156, 1623eqtr3d 2323 . . . . . 6  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )
164163feq1d 5379 . . . . 5  |-  ( ph  ->  ( ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  o F  -  m )
) ) : S --> B 
<->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) : S --> B ) )
165136, 164mpbid 201 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) : S --> B )
166 cnvimass 5033 . . . . . 6  |-  ( `' ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  C_  dom  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )
167 eqid 2283 . . . . . . 7  |-  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )
168167dmmptss 5169 . . . . . 6  |-  dom  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  C_  S
169166, 168sstri 3188 . . . . 5  |-  ( `' ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  C_  S
170 ssfi 7083 . . . . 5  |-  ( ( S  e.  Fin  /\  ( `' ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )
" ( _V  \  { ( 0g `  G ) } ) )  C_  S )  ->  ( `' ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  e.  Fin )
17189, 169, 170sylancl 643 . . . 4  |-  ( ph  ->  ( `' ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  e.  Fin )
1725, 86, 6, 89, 165, 171, 131gsumf1o 15199 . . 3  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m )
) ) ) )
173155oveq2d 5874 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  o R  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  o F  -  m )
) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
174172, 173eqtrd 2315 . 2  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  m
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
1756adantr 451 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  G  e. CMnd )
176 cnvimass 5033 . . . . . . . 8  |-  ( `' ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )
" ( _V  \  { ( 0g `  G ) } ) )  C_  dom  ( k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )
17710dmmptss 5169 . . . . . . . 8  |-  dom  (
k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) 
C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }
178176, 177sstri 3188 . . . . . . 7  |-  ( `' ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )
" ( _V  \  { ( 0g `  G ) } ) )  C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }
179 ssfi 7083 . . . . . . 7  |-  ( ( { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) }  e.  Fin  /\  ( `' ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X ) " ( _V  \  { ( 0g
`  G ) } ) )  C_  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  -> 
( `' ( k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X )
" ( _V  \  { ( 0g `  G ) } ) )  e.  Fin )
180108, 178, 179sylancl 643 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  ( `' ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X ) " ( _V  \  { ( 0g
`  G ) } ) )  e.  Fin )
1815, 86, 175, 108, 11, 180, 22gsumf1o 15199 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) ) ) )
18276oveq2d 5874 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( ( k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  ( ( F  o F  -  j )  o F  -  m ) ) ) )  =  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )
183181, 182eqtrd 2315 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) )
184183mpteq2dva 4106 . . 3  |-  ( ph  ->  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) ) )  =  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) )
185184oveq2d 5874 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  [_ (
( F  o F  -  m )  o F  -  j )  /  k ]_ X
) ) ) ) )
186117, 174, 1853eqtr4d 2325 1  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788   [_csb 3081    \ cdif 3149    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077    _I cid 4304    X. cxp 4687   `'ccnv 4688   dom cdm 4689    |` cres 4691   "cima 4692    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    o Fcof 6076    o Rcofr 6077    ^m cmap 6772   Fincfn 6863   CCcc 8735    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   Basecbs 13148   0gc0g 13400    gsumg cgsu 13401  CMndccmn 15089
This theorem is referenced by:  psrass1  16150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091
  Copyright terms: Public domain W3C validator