MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Unicode version

Theorem psrass23 16170
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrrng.s  |-  S  =  ( I mPwSer  R )
psrrng.i  |-  ( ph  ->  I  e.  V )
psrrng.r  |-  ( ph  ->  R  e.  Ring )
psrass.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrass.t  |-  .X.  =  ( .r `  S )
psrass.b  |-  B  =  ( Base `  S
)
psrass.x  |-  ( ph  ->  X  e.  B )
psrass.y  |-  ( ph  ->  Y  e.  B )
psrcom.c  |-  ( ph  ->  R  e.  CRing )
psrass.k  |-  K  =  ( Base `  R
)
psrass.n  |-  .x.  =  ( .s `  S )
psrass.a  |-  ( ph  ->  A  e.  K )
Assertion
Ref Expression
psrass23  |-  ( ph  ->  ( ( ( A 
.x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) )  /\  ( X  .X.  ( A  .x.  Y ) )  =  ( A 
.x.  ( X  .X.  Y ) ) ) )
Distinct variable groups:    f, I    R, f    f, X    f, Y
Allowed substitution hints:    ph( f)    A( f)    B( f)    D( f)    S( f)    .x. ( f)    .X. ( f)    K( f)    V( f)

Proof of Theorem psrass23
Dummy variables  x  k  y  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrrng.s . . . . . . . . . 10  |-  S  =  ( I mPwSer  R )
2 psrass.n . . . . . . . . . 10  |-  .x.  =  ( .s `  S )
3 eqid 2296 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
4 psrass.b . . . . . . . . . 10  |-  B  =  ( Base `  S
)
5 eqid 2296 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
6 psrass.d . . . . . . . . . 10  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 psrass.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  K )
87adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  D )  ->  A  e.  K )
9 psrass.k . . . . . . . . . . . 12  |-  K  =  ( Base `  R
)
108, 9syl6eleq 2386 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  A  e.  ( Base `  R
) )
1110adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  A  e.  ( Base `  R ) )
12 psrass.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  B )
1312ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  X  e.  B )
14 ssrab2 3271 . . . . . . . . . . 11  |-  { y  e.  D  |  y  o R  <_  k }  C_  D
15 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x  e.  { y  e.  D  |  y  o R  <_  k } )
1614, 15sseldi 3191 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x  e.  D )
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 16153 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( A  .x.  X ) `  x
)  =  ( A ( .r `  R
) ( X `  x ) ) )
1817oveq1d 5889 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( ( A 
.x.  X ) `  x ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) )  =  ( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) ) )
19 psrrng.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
2019ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  R  e.  Ring )
211, 3, 6, 4, 13psrelbas 16141 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  X : D --> ( Base `  R ) )
22 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( X : D --> ( Base `  R )  /\  x  e.  D )  ->  ( X `  x )  e.  ( Base `  R
) )
2321, 16, 22syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( X `  x
)  e.  ( Base `  R ) )
24 psrass.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  B )
2524ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  Y  e.  B )
261, 3, 6, 4, 25psrelbas 16141 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  Y : D --> ( Base `  R ) )
27 psrrng.i . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  V )
2827ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  I  e.  V )
29 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
k  e.  D )
30 eqid 2296 . . . . . . . . . . . . 13  |-  { y  e.  D  |  y  o R  <_  k }  =  { y  e.  D  |  y  o R  <_  k }
316, 30psrbagconcl 16135 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  k  e.  D  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  ( k  o F  -  x
)  e.  { y  e.  D  |  y  o R  <_  k } )
3228, 29, 15, 31syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( k  o F  -  x )  e. 
{ y  e.  D  |  y  o R  <_  k } )
3314, 32sseldi 3191 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( k  o F  -  x )  e.  D )
34 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( Y : D --> ( Base `  R )  /\  (
k  o F  -  x )  e.  D
)  ->  ( Y `  ( k  o F  -  x ) )  e.  ( Base `  R
) )
3526, 33, 34syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( Y `  (
k  o F  -  x ) )  e.  ( Base `  R
) )
363, 5rngass 15373 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  ( Base `  R )  /\  ( X `  x )  e.  ( Base `  R
)  /\  ( Y `  ( k  o F  -  x ) )  e.  ( Base `  R
) ) )  -> 
( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
3720, 11, 23, 35, 36syl13anc 1184 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
3818, 37eqtrd 2328 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( ( A 
.x.  X ) `  x ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
3938mpteq2dva 4122 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  (
x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( ( A  .x.  X ) `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) ) )
4039oveq2d 5890 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) ) ) )
41 eqid 2296 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
42 eqid 2296 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
4319adantr 451 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  R  e.  Ring )
446psrbaglefi 16134 . . . . . . 7  |-  ( ( I  e.  V  /\  k  e.  D )  ->  { y  e.  D  |  y  o R  <_  k }  e.  Fin )
4527, 44sylan 457 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  { y  e.  D  |  y  o R  <_  k }  e.  Fin )
463, 5rngcl 15370 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X `  x )  e.  ( Base `  R
)  /\  ( Y `  ( k  o F  -  x ) )  e.  ( Base `  R
) )  ->  (
( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) )  e.  (
Base `  R )
)
4720, 23, 35, 46syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) )  e.  ( Base `  R
) )
48 cnvimass 5049 . . . . . . . 8  |-  ( `' ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  dom  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) )
49 eqid 2296 . . . . . . . . 9  |-  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) ) )  =  ( x  e. 
{ y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) )
5049dmmptss 5185 . . . . . . . 8  |-  dom  (
x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) )  C_  { y  e.  D  |  y  o R  <_  k }
5148, 50sstri 3201 . . . . . . 7  |-  ( `' ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  { y  e.  D  |  y  o R  <_  k }
52 ssfi 7099 . . . . . . 7  |-  ( ( { y  e.  D  |  y  o R  <_  k }  e.  Fin  /\  ( `' ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) ) )
" ( _V  \  { ( 0g `  R ) } ) )  C_  { y  e.  D  |  y  o R  <_  k } )  ->  ( `' ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) " ( _V 
\  { ( 0g
`  R ) } ) )  e.  Fin )
5345, 51, 52sylancl 643 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  ( `' ( x  e. 
{ y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  e.  Fin )
543, 41, 42, 5, 43, 45, 10, 47, 53gsummulc2 15407 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) )
5540, 54eqtrd 2328 . . . 4  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) )
5655mpteq2dva 4122 . . 3  |-  ( ph  ->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) ) )
57 psrass.t . . . 4  |-  .X.  =  ( .r `  S )
581, 2, 9, 4, 19, 7, 12psrvscacl 16154 . . . 4  |-  ( ph  ->  ( A  .x.  X
)  e.  B )
591, 4, 5, 57, 6, 58, 24psrmulfval 16146 . . 3  |-  ( ph  ->  ( ( A  .x.  X )  .X.  Y
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( ( A  .x.  X ) `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) ) ) )
601, 4, 57, 19, 12, 24psrmulcl 16149 . . . . 5  |-  ( ph  ->  ( X  .X.  Y
)  e.  B )
611, 2, 9, 4, 5, 6, 7, 60psrvsca 16152 . . . 4  |-  ( ph  ->  ( A  .x.  ( X  .X.  Y ) )  =  ( ( D  X.  { A }
)  o F ( .r `  R ) ( X  .X.  Y
) ) )
62 ovex 5899 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
6362rabex 4181 . . . . . . 7  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
646, 63eqeltri 2366 . . . . . 6  |-  D  e. 
_V
6564a1i 10 . . . . 5  |-  ( ph  ->  D  e.  _V )
66 ovex 5899 . . . . . 6  |-  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) )  e.  _V
6766a1i 10 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) )  e. 
_V )
68 fconstmpt 4748 . . . . . 6  |-  ( D  X.  { A }
)  =  ( k  e.  D  |->  A )
6968a1i 10 . . . . 5  |-  ( ph  ->  ( D  X.  { A } )  =  ( k  e.  D  |->  A ) )
701, 4, 5, 57, 6, 12, 24psrmulfval 16146 . . . . 5  |-  ( ph  ->  ( X  .X.  Y
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) ) ) )
7165, 8, 67, 69, 70offval2 6111 . . . 4  |-  ( ph  ->  ( ( D  X.  { A } )  o F ( .r `  R ) ( X 
.X.  Y ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) ) )
7261, 71eqtrd 2328 . . 3  |-  ( ph  ->  ( A  .x.  ( X  .X.  Y ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) ) )
7356, 59, 723eqtr4d 2338 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .X.  Y
)  =  ( A 
.x.  ( X  .X.  Y ) ) )
741, 2, 3, 4, 5, 6, 11, 25, 33psrvscaval 16153 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( A  .x.  Y ) `  (
k  o F  -  x ) )  =  ( A ( .r
`  R ) ( Y `  ( k  o F  -  x
) ) ) )
7574oveq2d 5890 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  o F  -  x
) ) )  =  ( ( X `  x ) ( .r
`  R ) ( A ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
76 psrcom.c . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CRing )
7776ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  R  e.  CRing )
783, 5crngcom 15371 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
79783expb 1152 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
) ) )  -> 
( u ( .r
`  R ) v )  =  ( v ( .r `  R
) u ) )
8077, 79sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
) ) )  -> 
( u ( .r
`  R ) v )  =  ( v ( .r `  R
) u ) )
813, 5rngass 15373 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
)  /\  w  e.  ( Base `  R )
) )  ->  (
( u ( .r
`  R ) v ) ( .r `  R ) w )  =  ( u ( .r `  R ) ( v ( .r
`  R ) w ) ) )
8220, 81sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
)  /\  w  e.  ( Base `  R )
) )  ->  (
( u ( .r
`  R ) v ) ( .r `  R ) w )  =  ( u ( .r `  R ) ( v ( .r
`  R ) w ) ) )
8323, 11, 35, 80, 82caov12d 6057 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( A ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
8475, 83eqtrd 2328 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  o F  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) )
8584mpteq2dva 4122 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  (
x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( ( A  .x.  Y ) `  (
k  o F  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  o F  -  x ) ) ) ) ) )
8685oveq2d 5890 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  o F  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  o F  -  x ) ) ) ) ) ) )
8786, 54eqtrd 2328 . . . 4  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  o F  -  x ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) )
8887mpteq2dva 4122 . . 3  |-  ( ph  ->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  o F  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  o F  -  x ) ) ) ) ) ) ) )
891, 2, 9, 4, 19, 7, 24psrvscacl 16154 . . . 4  |-  ( ph  ->  ( A  .x.  Y
)  e.  B )
901, 4, 5, 57, 6, 12, 89psrmulfval 16146 . . 3  |-  ( ph  ->  ( X  .X.  ( A  .x.  Y ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  o F  -  x
) ) ) ) ) ) )
9188, 90, 723eqtr4d 2338 . 2  |-  ( ph  ->  ( X  .X.  ( A  .x.  Y ) )  =  ( A  .x.  ( X  .X.  Y ) ) )
9273, 91jca 518 1  |-  ( ph  ->  ( ( ( A 
.x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) )  /\  ( X  .X.  ( A  .x.  Y ) )  =  ( A 
.x.  ( X  .X.  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   dom cdm 4705   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092    o Rcofr 6093    ^m cmap 6788   Fincfn 6879    <_ cle 8884    - cmin 9053   NNcn 9762   NN0cn0 9981   Basecbs 13164   +g cplusg 13224   .rcmulr 13225   .scvsca 13228   0gc0g 13416    gsumg cgsu 13417   Ringcrg 15353   CRingccrg 15354   mPwSer cmps 16103
This theorem is referenced by:  psrassa  16174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-0g 13420  df-gsum 13421  df-mnd 14383  df-mhm 14431  df-grp 14505  df-minusg 14506  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-psr 16114
  Copyright terms: Public domain W3C validator