MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Unicode version

Theorem psrbagcon 16117
Description: The analogue of the statement " 0  <_  G  <_  F implies  0  <_  F  -  G  <_  F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbagcon  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  (
( F  o F  -  G )  e.  D  /\  ( F  o F  -  G
)  o R  <_  F ) )
Distinct variable groups:    f, F    f, G    f, I
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbagcon
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr1 961 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  F  e.  D )
2 psrbag.d . . . . . . . . . 10  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
32psrbag 16112 . . . . . . . . 9  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
43adantr 451 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
51, 4mpbid 201 . . . . . . 7  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) )
65simpld 445 . . . . . 6  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  F : I --> NN0 )
7 ffn 5389 . . . . . 6  |-  ( F : I --> NN0  ->  F  Fn  I )
86, 7syl 15 . . . . 5  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  F  Fn  I )
9 simpr2 962 . . . . . 6  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  G : I --> NN0 )
10 ffn 5389 . . . . . 6  |-  ( G : I --> NN0  ->  G  Fn  I )
119, 10syl 15 . . . . 5  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  G  Fn  I )
12 simpl 443 . . . . 5  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  I  e.  V )
13 inidm 3378 . . . . 5  |-  ( I  i^i  I )  =  I
148, 11, 12, 12, 13offn 6089 . . . 4  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F  o F  -  G
)  Fn  I )
15 eqidd 2284 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  ( F `  x )  =  ( F `  x ) )
16 eqidd 2284 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  ( G `  x )  =  ( G `  x ) )
178, 11, 12, 12, 13, 15, 16ofval 6087 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
( F  o F  -  G ) `  x )  =  ( ( F `  x
)  -  ( G `
 x ) ) )
18 simpr3 963 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  G  o R  <_  F )
1911, 8, 12, 12, 13, 16, 15ofrfval 6086 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( G  o R  <_  F  <->  A. x  e.  I  ( G `  x )  <_  ( F `  x ) ) )
2018, 19mpbid 201 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  A. x  e.  I  ( G `  x )  <_  ( F `  x )
)
2120r19.21bi 2641 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  ( G `  x )  <_  ( F `  x
) )
22 ffvelrn 5663 . . . . . . . . 9  |-  ( ( G : I --> NN0  /\  x  e.  I )  ->  ( G `  x
)  e.  NN0 )
239, 22sylan 457 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  ( G `  x )  e.  NN0 )
24 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : I --> NN0  /\  x  e.  I )  ->  ( F `  x
)  e.  NN0 )
256, 24sylan 457 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  ( F `  x )  e.  NN0 )
26 nn0sub 10014 . . . . . . . 8  |-  ( ( ( G `  x
)  e.  NN0  /\  ( F `  x )  e.  NN0 )  -> 
( ( G `  x )  <_  ( F `  x )  <->  ( ( F `  x
)  -  ( G `
 x ) )  e.  NN0 ) )
2723, 25, 26syl2anc 642 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
( G `  x
)  <_  ( F `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  e. 
NN0 ) )
2821, 27mpbid 201 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
( F `  x
)  -  ( G `
 x ) )  e.  NN0 )
2917, 28eqeltrd 2357 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
( F  o F  -  G ) `  x )  e.  NN0 )
3029ralrimiva 2626 . . . 4  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  A. x  e.  I  ( ( F  o F  -  G
) `  x )  e.  NN0 )
31 ffnfv 5685 . . . 4  |-  ( ( F  o F  -  G ) : I --> NN0  <->  ( ( F  o F  -  G
)  Fn  I  /\  A. x  e.  I  ( ( F  o F  -  G ) `  x )  e.  NN0 ) )
3214, 30, 31sylanbrc 645 . . 3  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F  o F  -  G
) : I --> NN0 )
335simprd 449 . . . 4  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( `' F " NN )  e.  Fin )
3423nn0ge0d 10021 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  0  <_  ( G `  x
) )
35 nn0re 9974 . . . . . . . . . 10  |-  ( ( F `  x )  e.  NN0  ->  ( F `
 x )  e.  RR )
36 nn0re 9974 . . . . . . . . . 10  |-  ( ( G `  x )  e.  NN0  ->  ( G `
 x )  e.  RR )
37 subge02 9289 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  RR  /\  ( G `  x )  e.  RR )  -> 
( 0  <_  ( G `  x )  <->  ( ( F `  x
)  -  ( G `
 x ) )  <_  ( F `  x ) ) )
3835, 36, 37syl2an 463 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  NN0  /\  ( G `  x )  e.  NN0 )  -> 
( 0  <_  ( G `  x )  <->  ( ( F `  x
)  -  ( G `
 x ) )  <_  ( F `  x ) ) )
3925, 23, 38syl2anc 642 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
0  <_  ( G `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  <_ 
( F `  x
) ) )
4034, 39mpbid 201 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  /\  x  e.  I )  ->  (
( F `  x
)  -  ( G `
 x ) )  <_  ( F `  x ) )
4140ralrimiva 2626 . . . . . 6  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  A. x  e.  I  ( ( F `  x )  -  ( G `  x ) )  <_ 
( F `  x
) )
4214, 8, 12, 12, 13, 17, 15ofrfval 6086 . . . . . 6  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  (
( F  o F  -  G )  o R  <_  F  <->  A. x  e.  I  ( ( F `  x )  -  ( G `  x ) )  <_ 
( F `  x
) ) )
4341, 42mpbird 223 . . . . 5  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F  o F  -  G
)  o R  <_  F )
442psrbaglesupp 16114 . . . . 5  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  ( F  o F  -  G ) : I --> NN0  /\  ( F  o F  -  G
)  o R  <_  F ) )  -> 
( `' ( F  o F  -  G
) " NN ) 
C_  ( `' F " NN ) )
4512, 1, 32, 43, 44syl13anc 1184 . . . 4  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( `' ( F  o F  -  G ) " NN )  C_  ( `' F " NN ) )
46 ssfi 7083 . . . 4  |-  ( ( ( `' F " NN )  e.  Fin  /\  ( `' ( F  o F  -  G
) " NN ) 
C_  ( `' F " NN ) )  -> 
( `' ( F  o F  -  G
) " NN )  e.  Fin )
4733, 45, 46syl2anc 642 . . 3  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( `' ( F  o F  -  G ) " NN )  e.  Fin )
482psrbag 16112 . . . 4  |-  ( I  e.  V  ->  (
( F  o F  -  G )  e.  D  <->  ( ( F  o F  -  G
) : I --> NN0  /\  ( `' ( F  o F  -  G ) " NN )  e.  Fin ) ) )
4948adantr 451 . . 3  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  (
( F  o F  -  G )  e.  D  <->  ( ( F  o F  -  G
) : I --> NN0  /\  ( `' ( F  o F  -  G ) " NN )  e.  Fin ) ) )
5032, 47, 49mpbir2and 888 . 2  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  ( F  o F  -  G
)  e.  D )
5150, 43jca 518 1  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  o R  <_  F
) )  ->  (
( F  o F  -  G )  e.  D  /\  ( F  o F  -  G
)  o R  <_  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   class class class wbr 4023   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076    o Rcofr 6077    ^m cmap 6772   Fincfn 6863   RRcr 8736   0cc0 8737    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965
This theorem is referenced by:  psrbagconcl  16119  psrbagconf1o  16120  gsumbagdiaglem  16121  psrmulcllem  16132  psrlidm  16148  psrridm  16149  psrass1  16150  psrcom  16153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966
  Copyright terms: Public domain W3C validator