MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Unicode version

Theorem psrbagconcl 16443
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  o R  <_  F }
Assertion
Ref Expression
psrbagconcl  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  ( F  o F  -  X )  e.  S )
Distinct variable groups:    y, f, F    y, V    f, I,
y    y, D    f, X, y
Allowed substitution hints:    D( f)    S( y, f)    V( f)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  I  e.  V )
2 simp2 959 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  F  e.  D )
3 simp3 960 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  X  e.  S )
4 breq1 4218 . . . . . . 7  |-  ( y  =  X  ->  (
y  o R  <_  F 
<->  X  o R  <_  F ) )
5 psrbagconf1o.1 . . . . . . 7  |-  S  =  { y  e.  D  |  y  o R  <_  F }
64, 5elrab2 3096 . . . . . 6  |-  ( X  e.  S  <->  ( X  e.  D  /\  X  o R  <_  F ) )
73, 6sylib 190 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  ( X  e.  D  /\  X  o R  <_  F ) )
87simpld 447 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  X  e.  D )
9 psrbag.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
109psrbagf 16437 . . . 4  |-  ( ( I  e.  V  /\  X  e.  D )  ->  X : I --> NN0 )
111, 8, 10syl2anc 644 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  X : I --> NN0 )
127simprd 451 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  X  o R  <_  F )
139psrbagcon 16441 . . 3  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  X : I --> NN0  /\  X  o R  <_  F
) )  ->  (
( F  o F  -  X )  e.  D  /\  ( F  o F  -  X
)  o R  <_  F ) )
141, 2, 11, 12, 13syl13anc 1187 . 2  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  ( ( F  o F  -  X )  e.  D  /\  ( F  o F  -  X
)  o R  <_  F ) )
15 breq1 4218 . . 3  |-  ( y  =  ( F  o F  -  X )  ->  ( y  o R  <_  F  <->  ( F  o F  -  X
)  o R  <_  F ) )
1615, 5elrab2 3096 . 2  |-  ( ( F  o F  -  X )  e.  S  <->  ( ( F  o F  -  X )  e.  D  /\  ( F  o F  -  X
)  o R  <_  F ) )
1714, 16sylibr 205 1  |-  ( ( I  e.  V  /\  F  e.  D  /\  X  e.  S )  ->  ( F  o F  -  X )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {crab 2711   class class class wbr 4215   `'ccnv 4880   "cima 4884   -->wf 5453  (class class class)co 6084    o Fcof 6306    o Rcofr 6307    ^m cmap 7021   Fincfn 7112    <_ cle 9126    - cmin 9296   NNcn 10005   NN0cn0 10226
This theorem is referenced by:  psrass1lem  16447  psrdi  16475  psrdir  16476  psrcom  16477  psrass23  16478  resspsrmul  16485  mplsubrglem  16507  mplmonmul  16532  psropprmul  16637  mdegmullem  20006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227
  Copyright terms: Public domain W3C validator