Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psref2 Structured version   Unicode version

Theorem psref2 14628
 Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
psref2

Proof of Theorem psref2
StepHypRef Expression
1 isps 14626 . . 3
21ibi 233 . 2
32simp3d 971 1
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 936   wceq 1652   wcel 1725   cin 3311   wss 3312  cuni 4007   cid 4485  ccnv 4869   cres 4872   ccom 4874   wrel 4875  cps 14616 This theorem is referenced by:  pslem  14630  cnvps  14636  tsrdir  14675 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-res 4882  df-ps 14621
 Copyright terms: Public domain W3C validator