MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Unicode version

Theorem psrmulfval 16449
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s  |-  S  =  ( I mPwSer  R )
psrmulr.b  |-  B  =  ( Base `  S
)
psrmulr.m  |-  .x.  =  ( .r `  R )
psrmulr.t  |-  .xb  =  ( .r `  S )
psrmulr.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
psrmulfval.i  |-  ( ph  ->  F  e.  B )
psrmulfval.r  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
psrmulfval  |-  ( ph  ->  ( F  .xb  G
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
Distinct variable groups:    x, k, B    y, k, D, x   
h, k, x, y, I    ph, k, x    k, F, x    k, G, x    .x. , k, x    R, k, x
Allowed substitution hints:    ph( y, h)    B( y, h)    D( h)    R( y, h)    S( x, y, h, k)    .xb ( x, y, h, k)    .x. ( y, h)    F( y, h)    G( y, h)

Proof of Theorem psrmulfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2  |-  ( ph  ->  F  e.  B )
2 psrmulfval.r . 2  |-  ( ph  ->  G  e.  B )
3 fveq1 5727 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 5727 . . . . . . 7  |-  ( g  =  G  ->  (
g `  ( k  o F  -  x
) )  =  ( G `  ( k  o F  -  x
) ) )
53, 4oveqan12d 6100 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x )  .x.  (
g `  ( k  o F  -  x
) ) )  =  ( ( F `  x )  .x.  ( G `  ( k  o F  -  x
) ) ) )
65mpteq2dv 4296 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  o F  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) )
76oveq2d 6097 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  o F  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( F `  x ) 
.x.  ( G `  ( k  o F  -  x ) ) ) ) ) )
87mpteq2dv 4296 . . 3  |-  ( ( f  =  F  /\  g  =  G )  ->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  o F  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `  x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
9 psrmulr.s . . . 4  |-  S  =  ( I mPwSer  R )
10 psrmulr.b . . . 4  |-  B  =  ( Base `  S
)
11 psrmulr.m . . . 4  |-  .x.  =  ( .r `  R )
12 psrmulr.t . . . 4  |-  .xb  =  ( .r `  S )
13 psrmulr.d . . . 4  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
149, 10, 11, 12, 13psrmulr 16448 . . 3  |-  .xb  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  o F  -  x ) ) ) ) ) ) )
15 ovex 6106 . . . . . 6  |-  ( NN0 
^m  I )  e. 
_V
1615rabex 4354 . . . . 5  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V
1713, 16eqeltri 2506 . . . 4  |-  D  e. 
_V
1817mptex 5966 . . 3  |-  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) )  e.  _V
198, 14, 18ovmpt2a 6204 . 2  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
201, 2, 19syl2anc 643 1  |-  ( ph  ->  ( F  .xb  G
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956   class class class wbr 4212    e. cmpt 4266   `'ccnv 4877   "cima 4881   ` cfv 5454  (class class class)co 6081    o Fcof 6303    o Rcofr 6304    ^m cmap 7018   Fincfn 7109    <_ cle 9121    - cmin 9291   NNcn 10000   NN0cn0 10221   Basecbs 13469   .rcmulr 13530    gsumg cgsu 13724   mPwSer cmps 16406
This theorem is referenced by:  psrmulval  16450  psrmulcllem  16451  psrdi  16470  psrdir  16471  psrcom  16472  psrass23  16473  resspsrmul  16480  mplmul  16506  psropprmul  16632  coe1mul2  16662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-psr 16417
  Copyright terms: Public domain W3C validator