MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrnegcl Unicode version

Theorem psrnegcl 16389
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
psrnegcl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrnegcl.i  |-  N  =  ( inv g `  R )
psrnegcl.b  |-  B  =  ( Base `  S
)
psrnegcl.z  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psrnegcl  |-  ( ph  ->  ( N  o.  X
)  e.  B )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    R( f)    S( f)    N( f)    V( f)    X( f)

Proof of Theorem psrnegcl
StepHypRef Expression
1 eqid 2389 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2 psrnegcl.i . . . . . 6  |-  N  =  ( inv g `  R )
3 psrgrp.r . . . . . 6  |-  ( ph  ->  R  e.  Grp )
41, 2, 3grpinvf1o 14790 . . . . 5  |-  ( ph  ->  N : ( Base `  R ) -1-1-onto-> ( Base `  R
) )
5 f1of 5616 . . . . 5  |-  ( N : ( Base `  R
)
-1-1-onto-> ( Base `  R )  ->  N : ( Base `  R ) --> ( Base `  R ) )
64, 5syl 16 . . . 4  |-  ( ph  ->  N : ( Base `  R ) --> ( Base `  R ) )
7 psrgrp.s . . . . 5  |-  S  =  ( I mPwSer  R )
8 psrnegcl.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
9 psrnegcl.b . . . . 5  |-  B  =  ( Base `  S
)
10 psrnegcl.z . . . . 5  |-  ( ph  ->  X  e.  B )
117, 1, 8, 9, 10psrelbas 16373 . . . 4  |-  ( ph  ->  X : D --> ( Base `  R ) )
12 fco 5542 . . . 4  |-  ( ( N : ( Base `  R ) --> ( Base `  R )  /\  X : D --> ( Base `  R
) )  ->  ( N  o.  X ) : D --> ( Base `  R
) )
136, 11, 12syl2anc 643 . . 3  |-  ( ph  ->  ( N  o.  X
) : D --> ( Base `  R ) )
14 fvex 5684 . . . 4  |-  ( Base `  R )  e.  _V
15 ovex 6047 . . . . . 6  |-  ( NN0 
^m  I )  e. 
_V
1615rabex 4297 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
178, 16eqeltri 2459 . . . 4  |-  D  e. 
_V
1814, 17elmap 6980 . . 3  |-  ( ( N  o.  X )  e.  ( ( Base `  R )  ^m  D
)  <->  ( N  o.  X ) : D --> ( Base `  R )
)
1913, 18sylibr 204 . 2  |-  ( ph  ->  ( N  o.  X
)  e.  ( (
Base `  R )  ^m  D ) )
20 psrgrp.i . . 3  |-  ( ph  ->  I  e.  V )
217, 1, 8, 9, 20psrbas 16372 . 2  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  D ) )
2219, 21eleqtrrd 2466 1  |-  ( ph  ->  ( N  o.  X
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {crab 2655   _Vcvv 2901   `'ccnv 4819   "cima 4823    o. ccom 4824   -->wf 5392   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022    ^m cmap 6956   Fincfn 7047   NNcn 9934   NN0cn0 10155   Basecbs 13398   Grpcgrp 14614   inv gcminusg 14615   mPwSer cmps 16335
This theorem is referenced by:  psrlinv  16390  psrgrp  16391  psrneg  16393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-tset 13477  df-0g 13656  df-mnd 14619  df-grp 14741  df-minusg 14742  df-psr 16346
  Copyright terms: Public domain W3C validator