MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Unicode version

Theorem psropprmul 16316
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y  |-  Y  =  ( I mPwSer  R )
psropprmul.s  |-  S  =  (oppr
`  R )
psropprmul.z  |-  Z  =  ( I mPwSer  S )
psropprmul.t  |-  .x.  =  ( .r `  Y )
psropprmul.u  |-  .xb  =  ( .r `  Z )
psropprmul.b  |-  B  =  ( Base `  Y
)
Assertion
Ref Expression
psropprmul  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )

Proof of Theorem psropprmul
Dummy variables  b 
c  e  f  a  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2283 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
3 rngcmn 15371 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
433ad2ant1 976 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  R  e. CMnd )
54adantr 451 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  R  e. CMnd )
6 ovex 5883 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
76rabex 4165 . . . . . . 7  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
87rabex 4165 . . . . . 6  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  e.  _V
98a1i 10 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  _V )
10 simpll1 994 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  R  e.  Ring )
11 psropprmul.y . . . . . . . . . 10  |-  Y  =  ( I mPwSer  R )
12 eqid 2283 . . . . . . . . . 10  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
13 psropprmul.b . . . . . . . . . 10  |-  B  =  ( Base `  Y
)
14 simp3 957 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
1511, 1, 12, 13, 14psrelbas 16125 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
1615adantr 451 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  G : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
17 ssrab2 3258 . . . . . . . . 9  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  C_  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }
1817sseli 3176 . . . . . . . 8  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  ->  e  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
19 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  /\  e  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  ->  ( G `  e )  e.  ( Base `  R
) )
2016, 18, 19syl2an 463 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( G `  e )  e.  (
Base `  R )
)
21 simp2 956 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
2211, 1, 12, 13, 21psrelbas 16125 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
2322ad2antrr 706 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  F : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
24 reldmpsr 16109 . . . . . . . . . . . . 13  |-  Rel  dom mPwSer
2511, 13, 24strov2rcl 16315 . . . . . . . . . . . 12  |-  ( G  e.  B  ->  I  e.  _V )
26253ad2ant3 978 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  I  e.  _V )
2726ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  I  e.  _V )
28 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
29 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
30 eqid 2283 . . . . . . . . . . 11  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  =  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
3112, 30psrbagconcl 16119 . . . . . . . . . 10  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  e  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
3227, 28, 29, 31syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )
3317, 32sseldi 3178 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e )  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )
34 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  /\  (
b  o F  -  e )  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( F `  ( b  o F  -  e ) )  e.  ( Base `  R
) )
3523, 33, 34syl2anc 642 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( F `  ( b  o F  -  e ) )  e.  ( Base `  R
) )
36 eqid 2283 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
371, 36rngcl 15354 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( G `  e )  e.  ( Base `  R
)  /\  ( F `  ( b  o F  -  e ) )  e.  ( Base `  R
) )  ->  (
( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) )  e.  (
Base `  R )
)
3810, 20, 35, 37syl3anc 1182 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  o F  -  e ) ) )  e.  ( Base `  R
) )
39 eqid 2283 . . . . . 6  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  =  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )
4038, 39fmptd 5684 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } --> ( Base `  R ) )
4112psrbaglefi 16118 . . . . . . 7  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  Fin )
4226, 41sylan 457 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  Fin )
43 cnvimass 5033 . . . . . . 7  |-  ( `' ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  dom  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )
4439dmmptss 5169 . . . . . . 7  |-  dom  (
e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
4543, 44sstri 3188 . . . . . 6  |-  ( `' ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
46 ssfi 7083 . . . . . 6  |-  ( ( { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  e.  Fin  /\  ( `' ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )  -> 
( `' ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )
" ( _V  \  { ( 0g `  R ) } ) )  e.  Fin )
4742, 45, 46sylancl 643 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( `' ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  e.  Fin )
4812, 30psrbagconf1o 16120 . . . . . 6  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )
4926, 48sylan 457 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )
501, 2, 5, 9, 40, 47, 49gsumf1o 15199 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) ) )  =  ( R 
gsumg  ( ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )  o.  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) ) ) )
5126ad2antrr 706 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  I  e.  _V )
52 simplr 731 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
53 simpr 447 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
5412, 30psrbagconcl 16119 . . . . . . . 8  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  c  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  c
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
5551, 52, 53, 54syl3anc 1182 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  c )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )
56 eqidd 2284 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) )
57 eqidd 2284 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )  =  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) )
58 fveq2 5525 . . . . . . . 8  |-  ( e  =  ( b  o F  -  c )  ->  ( G `  e )  =  ( G `  ( b  o F  -  c
) ) )
59 oveq2 5866 . . . . . . . . 9  |-  ( e  =  ( b  o F  -  c )  ->  ( b  o F  -  e )  =  ( b  o F  -  ( b  o F  -  c
) ) )
6059fveq2d 5529 . . . . . . . 8  |-  ( e  =  ( b  o F  -  c )  ->  ( F `  ( b  o F  -  e ) )  =  ( F `  ( b  o F  -  ( b  o F  -  c ) ) ) )
6158, 60oveq12d 5876 . . . . . . 7  |-  ( e  =  ( b  o F  -  c )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  o F  -  e ) ) )  =  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) ) )
6255, 56, 57, 61fmptco 5691 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  (
b  o F  -  c ) ) ( .r `  R ) ( F `  (
b  o F  -  ( b  o F  -  c ) ) ) ) ) )
6312psrbagf 16113 . . . . . . . . . . . . 13  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
6426, 63sylan 457 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
6564adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b : I --> NN0 )
6626adantr 451 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  I  e.  _V )
6717sseli 3176 . . . . . . . . . . . 12  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  ->  c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
6812psrbagf 16113 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  c  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  c : I --> NN0 )
6966, 67, 68syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  c : I --> NN0 )
70 nn0cn 9975 . . . . . . . . . . . . 13  |-  ( e  e.  NN0  ->  e  e.  CC )
71 nn0cn 9975 . . . . . . . . . . . . 13  |-  ( f  e.  NN0  ->  f  e.  CC )
72 nncan 9076 . . . . . . . . . . . . 13  |-  ( ( e  e.  CC  /\  f  e.  CC )  ->  ( e  -  (
e  -  f ) )  =  f )
7370, 71, 72syl2an 463 . . . . . . . . . . . 12  |-  ( ( e  e.  NN0  /\  f  e.  NN0 )  -> 
( e  -  (
e  -  f ) )  =  f )
7473adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  /\  c  e.  { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  /\  ( e  e. 
NN0  /\  f  e.  NN0 ) )  ->  (
e  -  ( e  -  f ) )  =  f )
7551, 65, 69, 74caonncan 6115 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  ( b  o F  -  c
) )  =  c )
7675fveq2d 5529 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( F `  ( b  o F  -  ( b  o F  -  c ) ) )  =  ( F `  c ) )
7776oveq2d 5874 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) )  =  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 c ) ) )
78 psropprmul.s . . . . . . . . 9  |-  S  =  (oppr
`  R )
79 eqid 2283 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
801, 36, 78, 79opprmul 15408 . . . . . . . 8  |-  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) )  =  ( ( G `  ( b  o F  -  c
) ) ( .r
`  R ) ( F `  c ) )
8177, 80syl6eqr 2333 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) )  =  ( ( F `
 c ) ( .r `  S ) ( G `  (
b  o F  -  c ) ) ) )
8281mpteq2dva 4106 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  (
b  o F  -  c ) ) ( .r `  R ) ( F `  (
b  o F  -  ( b  o F  -  c ) ) ) ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )
8362, 82eqtrd 2315 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( F `  c
) ( .r `  S ) ( G `
 ( b  o F  -  c ) ) ) ) )
8483oveq2d 5874 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )  o.  (
c  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) ) )  =  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) ) ) )
858mptex 5746 . . . . . . . 8  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) )  e.  _V
8685a1i 10 . . . . . . 7  |-  ( R  e.  Ring  ->  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) )  e.  _V )
87 id 19 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Ring )
88 fvex 5539 . . . . . . . . 9  |-  (oppr `  R
)  e.  _V
8978, 88eqeltri 2353 . . . . . . . 8  |-  S  e. 
_V
9089a1i 10 . . . . . . 7  |-  ( R  e.  Ring  ->  S  e. 
_V )
9178, 1opprbas 15411 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  S )
9291a1i 10 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  S )
)
93 eqid 2283 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
9478, 93oppradd 15412 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  S )
9594a1i 10 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  S ) )
9686, 87, 90, 92, 95gsumpropd 14453 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
97963ad2ant1 976 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( R  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
9897adantr 451 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
9950, 84, 983eqtrd 2319 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
10099mpteq2dva 4106 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) ) )  =  ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) ) )
101 psropprmul.t . . 3  |-  .x.  =  ( .r `  Y )
10211, 13, 36, 101, 12, 14, 21psrmulfval 16130 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( G  .x.  F )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) ) ) )
103 psropprmul.z . . 3  |-  Z  =  ( I mPwSer  S )
104 eqid 2283 . . 3  |-  ( Base `  Z )  =  (
Base `  Z )
105 psropprmul.u . . 3  |-  .xb  =  ( .r `  Z )
10691a1i 10 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  R )  =  ( Base `  S
) )
107106psrbaspropd 16312 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  ( I mPwSer  R
) )  =  (
Base `  ( I mPwSer  S ) ) )
10811fveq2i 5528 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  ( I mPwSer  R ) )
10913, 108eqtri 2303 . . . . 5  |-  B  =  ( Base `  (
I mPwSer  R ) )
110103fveq2i 5528 . . . . 5  |-  ( Base `  Z )  =  (
Base `  ( I mPwSer  S ) )
111107, 109, 1103eqtr4g 2340 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  B  =  ( Base `  Z
) )
11221, 111eleqtrd 2359 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  ( Base `  Z
) )
11314, 111eleqtrd 2359 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  ( Base `  Z
) )
114103, 104, 79, 105, 12, 112, 113psrmulfval 16130 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) ) )
115100, 102, 1143eqtr4rd 2326 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    \ cdif 3149    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   dom cdm 4689   "cima 4692    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    o Fcof 6076    o Rcofr 6077    ^m cmap 6772   Fincfn 6863   CCcc 8735    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   0gc0g 13400    gsumg cgsu 13401  CMndccmn 15089   Ringcrg 15337  opprcoppr 15404   mPwSer cmps 16087
This theorem is referenced by:  ply1opprmul  16317
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-0g 13404  df-gsum 13405  df-mnd 14367  df-grp 14489  df-minusg 14490  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-psr 16098
  Copyright terms: Public domain W3C validator