MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Unicode version

Theorem psropprmul 16622
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y  |-  Y  =  ( I mPwSer  R )
psropprmul.s  |-  S  =  (oppr
`  R )
psropprmul.z  |-  Z  =  ( I mPwSer  S )
psropprmul.t  |-  .x.  =  ( .r `  Y )
psropprmul.u  |-  .xb  =  ( .r `  Z )
psropprmul.b  |-  B  =  ( Base `  Y
)
Assertion
Ref Expression
psropprmul  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )

Proof of Theorem psropprmul
Dummy variables  b 
c  e  f  a  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2435 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
3 rngcmn 15684 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
433ad2ant1 978 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  R  e. CMnd )
54adantr 452 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  R  e. CMnd )
6 ovex 6098 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
76rabex 4346 . . . . . . 7  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
87rabex 4346 . . . . . 6  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  e.  _V
98a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  _V )
10 simpll1 996 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  R  e.  Ring )
11 psropprmul.y . . . . . . . . . 10  |-  Y  =  ( I mPwSer  R )
12 eqid 2435 . . . . . . . . . 10  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
13 psropprmul.b . . . . . . . . . 10  |-  B  =  ( Base `  Y
)
14 simp3 959 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
1511, 1, 12, 13, 14psrelbas 16434 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
1615adantr 452 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  G : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
17 elrabi 3082 . . . . . . . 8  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  ->  e  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
18 ffvelrn 5860 . . . . . . . 8  |-  ( ( G : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  /\  e  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  ->  ( G `  e )  e.  ( Base `  R
) )
1916, 17, 18syl2an 464 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( G `  e )  e.  (
Base `  R )
)
20 simp2 958 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
2111, 1, 12, 13, 20psrelbas 16434 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
2221ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  F : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
23 ssrab2 3420 . . . . . . . . 9  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  C_  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }
24 reldmpsr 16418 . . . . . . . . . . . . 13  |-  Rel  dom mPwSer
2511, 13, 24strov2rcl 16621 . . . . . . . . . . . 12  |-  ( G  e.  B  ->  I  e.  _V )
26253ad2ant3 980 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  I  e.  _V )
2726ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  I  e.  _V )
28 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
29 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
30 eqid 2435 . . . . . . . . . . 11  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  =  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
3112, 30psrbagconcl 16428 . . . . . . . . . 10  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  e  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
3227, 28, 29, 31syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )
3323, 32sseldi 3338 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  e )  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )
3422, 33ffvelrnd 5863 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( F `  ( b  o F  -  e ) )  e.  ( Base `  R
) )
35 eqid 2435 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
361, 35rngcl 15667 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( G `  e )  e.  ( Base `  R
)  /\  ( F `  ( b  o F  -  e ) )  e.  ( Base `  R
) )  ->  (
( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) )  e.  (
Base `  R )
)
3710, 19, 34, 36syl3anc 1184 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  o F  -  e ) ) )  e.  ( Base `  R
) )
38 eqid 2435 . . . . . 6  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  =  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )
3937, 38fmptd 5885 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } --> ( Base `  R ) )
4012psrbaglefi 16427 . . . . . . 7  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  Fin )
4126, 40sylan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  e.  Fin )
42 cnvimass 5216 . . . . . . 7  |-  ( `' ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  dom  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )
4338dmmptss 5358 . . . . . . 7  |-  dom  (
e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
4442, 43sstri 3349 . . . . . 6  |-  ( `' ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }
45 ssfi 7321 . . . . . 6  |-  ( ( { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  e.  Fin  /\  ( `' ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )  -> 
( `' ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )
" ( _V  \  { ( 0g `  R ) } ) )  e.  Fin )
4641, 44, 45sylancl 644 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( `' ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) " ( _V  \  { ( 0g
`  R ) } ) )  e.  Fin )
4712, 30psrbagconf1o 16429 . . . . . 6  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )
4826, 47sylan 458 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )
491, 2, 5, 9, 39, 46, 48gsumf1o 15512 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) ) )  =  ( R 
gsumg  ( ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )  o.  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) ) ) )
5026ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  I  e.  _V )
51 simplr 732 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
52 simpr 448 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
5312, 30psrbagconcl 16428 . . . . . . . 8  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  c  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  c
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b } )
5450, 51, 52, 53syl3anc 1184 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  c )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } )
55 eqidd 2436 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) )
56 eqidd 2436 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  o F  -  e ) ) ) )  =  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) )
57 fveq2 5720 . . . . . . . 8  |-  ( e  =  ( b  o F  -  c )  ->  ( G `  e )  =  ( G `  ( b  o F  -  c
) ) )
58 oveq2 6081 . . . . . . . . 9  |-  ( e  =  ( b  o F  -  c )  ->  ( b  o F  -  e )  =  ( b  o F  -  ( b  o F  -  c
) ) )
5958fveq2d 5724 . . . . . . . 8  |-  ( e  =  ( b  o F  -  c )  ->  ( F `  ( b  o F  -  e ) )  =  ( F `  ( b  o F  -  ( b  o F  -  c ) ) ) )
6057, 59oveq12d 6091 . . . . . . 7  |-  ( e  =  ( b  o F  -  c )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  o F  -  e ) ) )  =  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) ) )
6154, 55, 56, 60fmptco 5893 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  (
b  o F  -  c ) ) ( .r `  R ) ( F `  (
b  o F  -  ( b  o F  -  c ) ) ) ) ) )
6212psrbagf 16422 . . . . . . . . . . . . 13  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
6326, 62sylan 458 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
6463adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  b : I --> NN0 )
6526adantr 452 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  I  e.  _V )
66 elrabi 3082 . . . . . . . . . . . 12  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b }  ->  c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
6712psrbagf 16422 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  c  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  c : I --> NN0 )
6865, 66, 67syl2an 464 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  c : I --> NN0 )
69 nn0cn 10221 . . . . . . . . . . . . 13  |-  ( e  e.  NN0  ->  e  e.  CC )
70 nn0cn 10221 . . . . . . . . . . . . 13  |-  ( f  e.  NN0  ->  f  e.  CC )
71 nncan 9320 . . . . . . . . . . . . 13  |-  ( ( e  e.  CC  /\  f  e.  CC )  ->  ( e  -  (
e  -  f ) )  =  f )
7269, 70, 71syl2an 464 . . . . . . . . . . . 12  |-  ( ( e  e.  NN0  /\  f  e.  NN0 )  -> 
( e  -  (
e  -  f ) )  =  f )
7372adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  /\  c  e.  { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  /\  ( e  e. 
NN0  /\  f  e.  NN0 ) )  ->  (
e  -  ( e  -  f ) )  =  f )
7450, 64, 68, 73caonncan 6334 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( b  o F  -  ( b  o F  -  c
) )  =  c )
7574fveq2d 5724 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( F `  ( b  o F  -  ( b  o F  -  c ) ) )  =  ( F `  c ) )
7675oveq2d 6089 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) )  =  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 c ) ) )
77 psropprmul.s . . . . . . . . 9  |-  S  =  (oppr
`  R )
78 eqid 2435 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
791, 35, 77, 78opprmul 15721 . . . . . . . 8  |-  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) )  =  ( ( G `  ( b  o F  -  c
) ) ( .r
`  R ) ( F `  c ) )
8076, 79syl6eqr 2485 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b } )  ->  ( ( G `
 ( b  o F  -  c ) ) ( .r `  R ) ( F `
 ( b  o F  -  ( b  o F  -  c
) ) ) )  =  ( ( F `
 c ) ( .r `  S ) ( G `  (
b  o F  -  c ) ) ) )
8180mpteq2dva 4287 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( G `  (
b  o F  -  c ) ) ( .r `  R ) ( F `  (
b  o F  -  ( b  o F  -  c ) ) ) ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )
8261, 81eqtrd 2467 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( b  o F  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  o R  <_  b }  |->  ( ( F `  c
) ( .r `  S ) ( G `
 ( b  o F  -  c ) ) ) ) )
8382oveq2d 6089 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) )  o.  (
c  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( b  o F  -  c
) ) ) )  =  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) ) ) )
848mptex 5958 . . . . . . . 8  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) )  e.  _V
8584a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) )  e.  _V )
86 id 20 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Ring )
87 fvex 5734 . . . . . . . . 9  |-  (oppr `  R
)  e.  _V
8877, 87eqeltri 2505 . . . . . . . 8  |-  S  e. 
_V
8988a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  S  e. 
_V )
9077, 1opprbas 15724 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  S )
9190a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  S )
)
92 eqid 2435 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
9377, 92oppradd 15725 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  S )
9493a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  S ) )
9585, 86, 89, 91, 94gsumpropd 14766 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
96953ad2ant1 978 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( R  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
9796adantr 452 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  o F  -  c
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
9849, 83, 973eqtrd 2471 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  o R  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  o F  -  e
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) )
9998mpteq2dva 4287 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) ) )  =  ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) ) )
100 psropprmul.t . . 3  |-  .x.  =  ( .r `  Y )
10111, 13, 35, 100, 12, 14, 20psrmulfval 16439 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( G  .x.  F )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  o F  -  e ) ) ) ) ) ) )
102 psropprmul.z . . 3  |-  Z  =  ( I mPwSer  S )
103 eqid 2435 . . 3  |-  ( Base `  Z )  =  (
Base `  Z )
104 psropprmul.u . . 3  |-  .xb  =  ( .r `  Z )
10590a1i 11 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  R )  =  ( Base `  S
) )
106105psrbaspropd 16618 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  ( I mPwSer  R
) )  =  (
Base `  ( I mPwSer  S ) ) )
10711fveq2i 5723 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  ( I mPwSer  R ) )
10813, 107eqtri 2455 . . . . 5  |-  B  =  ( Base `  (
I mPwSer  R ) )
109102fveq2i 5723 . . . . 5  |-  ( Base `  Z )  =  (
Base `  ( I mPwSer  S ) )
110106, 108, 1093eqtr4g 2492 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  B  =  ( Base `  Z
) )
11120, 110eleqtrd 2511 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  ( Base `  Z
) )
11214, 110eleqtrd 2511 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  ( Base `  Z
) )
113102, 103, 78, 104, 12, 111, 112psrmulfval 16439 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  o R  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  o F  -  c ) ) ) ) ) ) )
11499, 101, 1133eqtr4rd 2478 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   dom cdm 4870   "cima 4873    o. ccom 4874   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073    o Fcof 6295    o Rcofr 6296    ^m cmap 7010   Fincfn 7101   CCcc 8978    <_ cle 9111    - cmin 9281   NNcn 9990   NN0cn0 10211   Basecbs 13459   +g cplusg 13519   .rcmulr 13520   0gc0g 13713    gsumg cgsu 13714  CMndccmn 15402   Ringcrg 15650  opprcoppr 15717   mPwSer cmps 16396
This theorem is referenced by:  ply1opprmul  16623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7469  df-card 7816  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-n0 10212  df-z 10273  df-uz 10479  df-fz 11034  df-fzo 11126  df-seq 11314  df-hash 11609  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-plusg 13532  df-mulr 13533  df-sca 13535  df-vsca 13536  df-tset 13538  df-0g 13717  df-gsum 13718  df-mnd 14680  df-grp 14802  df-minusg 14803  df-cntz 15106  df-cmn 15404  df-abl 15405  df-mgp 15639  df-rng 15653  df-ur 15655  df-oppr 15718  df-psr 16407
  Copyright terms: Public domain W3C validator