MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusg Unicode version

Theorem psrplusg 16365
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s  |-  S  =  ( I mPwSer  R )
psrplusg.b  |-  B  =  ( Base `  S
)
psrplusg.a  |-  .+  =  ( +g  `  R )
psrplusg.p  |-  .+b  =  ( +g  `  S )
Assertion
Ref Expression
psrplusg  |-  .+b  =  (  o F  .+  |`  ( B  X.  B ) )

Proof of Theorem psrplusg
Dummy variables  f 
g  k  x  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 eqid 2380 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3 psrplusg.a . . . . 5  |-  .+  =  ( +g  `  R )
4 eqid 2380 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2380 . . . . 5  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 eqid 2380 . . . . 5  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
7 psrplusg.b . . . . . 6  |-  B  =  ( Base `  S
)
8 simpl 444 . . . . . 6  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  I  e.  _V )
91, 2, 6, 7, 8psrbas 16363 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  B  =  ( (
Base `  R )  ^m  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } ) )
10 eqid 2380 . . . . 5  |-  (  o F  .+  |`  ( B  X.  B ) )  =  (  o F 
.+  |`  ( B  X.  B ) )
11 eqid 2380 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) )
12 eqid 2380 . . . . 5  |-  ( x  e.  ( Base `  R
) ,  f  e.  B  |->  ( ( { h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { x }
)  o F ( .r `  R ) f ) )  =  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) )
13 eqidd 2381 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( Xt_ `  ( { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R
) } ) ) )
14 simpr 448 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  R  e.  _V )
151, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 8, 14psrval 16349 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) )
1615fveq2d 5665 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( +g  `  S
)  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
17 psrplusg.p . . 3  |-  .+b  =  ( +g  `  S )
18 fvex 5675 . . . . . 6  |-  ( Base `  S )  e.  _V
197, 18eqeltri 2450 . . . . 5  |-  B  e. 
_V
2019, 19xpex 4923 . . . 4  |-  ( B  X.  B )  e. 
_V
21 ofexg 6241 . . . 4  |-  ( ( B  X.  B )  e.  _V  ->  (  o F  .+  |`  ( B  X.  B ) )  e.  _V )
22 psrvalstr 16350 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) Struct  <. 1 ,  9 >.
23 plusgid 13484 . . . . 5  |-  +g  = Slot  ( +g  `  ndx )
24 snsstp2 3886 . . . . . 6  |-  { <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }
25 ssun1 3446 . . . . . 6  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
2624, 25sstri 3293 . . . . 5  |-  { <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
2722, 23, 26strfv 13421 . . . 4  |-  ( (  o F  .+  |`  ( B  X.  B ) )  e.  _V  ->  (  o F  .+  |`  ( B  X.  B ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
2820, 21, 27mp2b 10 . . 3  |-  (  o F  .+  |`  ( B  X.  B ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  o F  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  o F  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  o F ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) )
2916, 17, 283eqtr4g 2437 . 2  |-  ( ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (  o F  .+  |`  ( B  X.  B ) ) )
30 reldmpsr 16348 . . . . . . 7  |-  Rel  dom mPwSer
3130ovprc 6040 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
321, 31syl5eq 2424 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  S  =  (/) )
3332fveq2d 5665 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( +g  `  S
)  =  ( +g  `  (/) ) )
3423str0 13425 . . . 4  |-  (/)  =  ( +g  `  (/) )
3533, 17, 343eqtr4g 2437 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (/) )
3632fveq2d 5665 . . . . . . . 8  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( Base `  S
)  =  ( Base `  (/) ) )
37 base0 13426 . . . . . . . 8  |-  (/)  =  (
Base `  (/) )
3836, 7, 373eqtr4g 2437 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
3938xpeq2d 4835 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( B  X.  B
)  =  ( B  X.  (/) ) )
40 xp0 5224 . . . . . 6  |-  ( B  X.  (/) )  =  (/)
4139, 40syl6eq 2428 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( B  X.  B
)  =  (/) )
4241reseq2d 5079 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  (  o F  .+  |`  ( B  X.  B
) )  =  (  o F  .+  |`  (/) ) )
43 res0 5083 . . . 4  |-  (  o F  .+  |`  (/) )  =  (/)
4442, 43syl6eq 2428 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  (  o F  .+  |`  ( B  X.  B
) )  =  (/) )
4535, 44eqtr4d 2415 . 2  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (  o F  .+  |`  ( B  X.  B ) ) )
4629, 45pm2.61i 158 1  |-  .+b  =  (  o F  .+  |`  ( B  X.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2646   _Vcvv 2892    u. cun 3254   (/)c0 3564   {csn 3750   {ctp 3752   <.cop 3753   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810    |` cres 4813   "cima 4814   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015    o Fcof 6235    o Rcofr 6236    ^m cmap 6947   Fincfn 7038   1c1 8917    <_ cle 9047    - cmin 9216   NNcn 9925   9c9 9981   NN0cn0 10146   ndxcnx 13386   Basecbs 13389   +g cplusg 13449   .rcmulr 13450  Scalarcsca 13452   .scvsca 13453  TopSetcts 13455   TopOpenctopn 13569   Xt_cpt 13586    gsumg cgsu 13644   mPwSer cmps 16326
This theorem is referenced by:  psradd  16366  psrmulr  16368  psrsca  16373  psrvscafval  16374  psrplusgpropd  16549  ply1plusgfvi  16556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-tset 13468  df-psr 16337
  Copyright terms: Public domain W3C validator