MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Unicode version

Theorem psrplusgpropd 16523
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1  |-  ( ph  ->  B  =  ( Base `  R ) )
psrplusgpropd.b2  |-  ( ph  ->  B  =  ( Base `  S ) )
psrplusgpropd.p  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
psrplusgpropd  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Distinct variable groups:    ph, y, x   
x, B, y    y, R, x    y, S, x
Allowed substitution hints:    I( x, y)

Proof of Theorem psrplusgpropd
Dummy variables  a 
b  d  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 959 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  ph )
2 eqid 2366 . . . . . . . . . . 11  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
3 eqid 2366 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4 eqid 2366 . . . . . . . . . . 11  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  =  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }
5 eqid 2366 . . . . . . . . . . 11  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
6 simp2 957 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  e.  (
Base `  ( I mPwSer  R ) ) )
72, 3, 4, 5, 6psrelbas 16335 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
8 ffvelrn 5770 . . . . . . . . . 10  |-  ( ( a : { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  ( Base `  R
) )
97, 8sylan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  ( Base `  R
) )
10 psrplusgpropd.b1 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( Base `  R ) )
111, 10syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  B  =  ( Base `  R
) )
129, 11eleqtrrd 2443 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  B )
13 simp3 958 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  e.  (
Base `  ( I mPwSer  R ) ) )
142, 3, 4, 5, 13psrelbas 16335 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
15 ffvelrn 5770 . . . . . . . . . 10  |-  ( ( b : { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  ( Base `  R
) )
1614, 15sylan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  ( Base `  R
) )
1716, 11eleqtrrd 2443 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  B )
18 psrplusgpropd.p . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
1918proplem 13802 . . . . . . . 8  |-  ( (
ph  /\  ( (
a `  d )  e.  B  /\  (
b `  d )  e.  B ) )  -> 
( ( a `  d ) ( +g  `  R ) ( b `
 d ) )  =  ( ( a `
 d ) ( +g  `  S ) ( b `  d
) ) )
201, 12, 17, 19syl12anc 1181 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
( a `  d
) ( +g  `  R
) ( b `  d ) )  =  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) )
2120mpteq2dva 4208 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  R
) ( b `  d ) ) )  =  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  S
) ( b `  d ) ) ) )
22 ffn 5495 . . . . . . . 8  |-  ( a : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  a  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
237, 22syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
24 ffn 5495 . . . . . . . 8  |-  ( b : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  b  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
2514, 24syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
26 ovex 6006 . . . . . . . . 9  |-  ( NN0 
^m  I )  e. 
_V
2726rabex 4267 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  e.  _V
2827a1i 10 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }  e.  _V )
29 inidm 3466 . . . . . . 7  |-  ( { c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin }  i^i  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } )  =  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }
30 eqidd 2367 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  =  ( a `  d ) )
31 eqidd 2367 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  =  ( b `  d ) )
3223, 25, 28, 28, 29, 30, 31offval 6212 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  R
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  R ) ( b `
 d ) ) ) )
3323, 25, 28, 28, 29, 30, 31offval 6212 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  S
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) ) )
3421, 32, 333eqtr4d 2408 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  R
) b )  =  ( a  o F ( +g  `  S
) b ) )
3534mpt2eq3dva 6038 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
36 psrplusgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  S ) )
3710, 36eqtr3d 2400 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  S ) )
3837psrbaspropd 16522 . . . . 5  |-  ( ph  ->  ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) ) )
39 mpt2eq12 6034 . . . . 5  |-  ( ( ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) )  /\  ( Base `  ( I mPwSer  R ) )  =  (
Base `  ( I mPwSer  S ) ) )  -> 
( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
4038, 38, 39syl2anc 642 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
4135, 40eqtrd 2398 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
42 ofmres 6243 . . 3  |-  (  o F ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )
43 ofmres 6243 . . 3  |-  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) )
4441, 42, 433eqtr4g 2423 . 2  |-  ( ph  ->  (  o F ( +g  `  R )  |`  ( ( Base `  (
I mPwSer  R ) )  X.  ( Base `  (
I mPwSer  R ) ) ) )  =  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) ) )
45 eqid 2366 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
46 eqid 2366 . . 3  |-  ( +g  `  ( I mPwSer  R ) )  =  ( +g  `  ( I mPwSer  R ) )
472, 5, 45, 46psrplusg 16336 . 2  |-  ( +g  `  ( I mPwSer  R ) )  =  (  o F ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )
48 eqid 2366 . . 3  |-  ( I mPwSer  S )  =  ( I mPwSer  S )
49 eqid 2366 . . 3  |-  ( Base `  ( I mPwSer  S ) )  =  ( Base `  ( I mPwSer  S ) )
50 eqid 2366 . . 3  |-  ( +g  `  S )  =  ( +g  `  S )
51 eqid 2366 . . 3  |-  ( +g  `  ( I mPwSer  S ) )  =  ( +g  `  ( I mPwSer  S ) )
5248, 49, 50, 51psrplusg 16336 . 2  |-  ( +g  `  ( I mPwSer  S ) )  =  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )
5344, 47, 523eqtr4g 2423 1  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   {crab 2632   _Vcvv 2873    e. cmpt 4179    X. cxp 4790   `'ccnv 4791    |` cres 4794   "cima 4795    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983    o Fcof 6203    ^m cmap 6915   Fincfn 7006   NNcn 9893   NN0cn0 10114   Basecbs 13356   +g cplusg 13416   mPwSer cmps 16297
This theorem is referenced by:  ply1plusgpropd  16532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-plusg 13429  df-mulr 13430  df-sca 13432  df-vsca 13433  df-tset 13435  df-psr 16308
  Copyright terms: Public domain W3C validator