MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Unicode version

Theorem psrvscafval 16135
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrvsca.s  |-  S  =  ( I mPwSer  R )
psrvsca.n  |-  .xb  =  ( .s `  S )
psrvsca.k  |-  K  =  ( Base `  R
)
psrvsca.b  |-  B  =  ( Base `  S
)
psrvsca.m  |-  .x.  =  ( .r `  R )
psrvsca.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
Assertion
Ref Expression
psrvscafval  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) )
Distinct variable groups:    x, f, B    f, h, I, x   
f, K, x    D, f, x    R, f, x    .x. , f, x    .xb , f, x
Allowed substitution hints:    B( h)    D( h)    R( h)    S( x, f, h)    .xb ( h)    .x. ( h)    K( h)

Proof of Theorem psrvscafval
Dummy variables  g 
k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 psrvsca.k . . . . 5  |-  K  =  ( Base `  R
)
3 eqid 2283 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
4 psrvsca.m . . . . 5  |-  .x.  =  ( .r `  R )
5 eqid 2283 . . . . 5  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 psrvsca.d . . . . 5  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
7 psrvsca.b . . . . . 6  |-  B  =  ( Base `  S
)
8 simpl 443 . . . . . 6  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  I  e.  _V )
91, 2, 6, 7, 8psrbas 16124 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  B  =  ( K  ^m  D ) )
10 eqid 2283 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
111, 7, 3, 10psrplusg 16126 . . . . 5  |-  ( +g  `  S )  =  (  o F ( +g  `  R )  |`  ( B  X.  B ) )
12 eqid 2283 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
131, 7, 4, 12, 6psrmulr 16129 . . . . 5  |-  ( .r
`  S )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  o F  -  x ) ) ) ) ) ) )
14 eqid 2283 . . . . 5  |-  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) )  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  o F  .x.  f ) )
15 eqidd 2284 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) ) )
16 simpr 447 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  R  e.  _V )
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 16110 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  S ) >. ,  <. ( .r `  ndx ) ,  ( .r `  S ) >. }  u.  {
<. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
1817fveq2d 5529 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( .s `  S
)  =  ( .s
`  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
19 psrvsca.n . . 3  |-  .xb  =  ( .s `  S )
20 fvex 5539 . . . . . 6  |-  ( Base `  R )  e.  _V
212, 20eqeltri 2353 . . . . 5  |-  K  e. 
_V
22 fvex 5539 . . . . . 6  |-  ( Base `  S )  e.  _V
237, 22eqeltri 2353 . . . . 5  |-  B  e. 
_V
2421, 23mpt2ex 6198 . . . 4  |-  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) )  e.  _V
25 psrvalstr 16111 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  S ) >. ,  <. ( .r `  ndx ) ,  ( .r `  S ) >. }  u.  {
<. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) Struct  <. 1 ,  9 >.
26 vscaid 13271 . . . . 5  |-  .s  = Slot  ( .s `  ndx )
27 snsstp2 3767 . . . . . 6  |-  { <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  o F  .x.  f ) ) >. }  C_  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) ) >. }
28 ssun2 3339 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } )
2927, 28sstri 3188 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  o F  .x.  f ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } )
3025, 26, 29strfv 13180 . . . 4  |-  ( ( x  e.  K , 
f  e.  B  |->  ( ( D  X.  {
x } )  o F  .x.  f ) )  e.  _V  ->  ( x  e.  K , 
f  e.  B  |->  ( ( D  X.  {
x } )  o F  .x.  f ) )  =  ( .s
`  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
3124, 30ax-mp 8 . . 3  |-  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) )  =  ( .s `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  S ) >. ,  <. ( .r `  ndx ) ,  ( .r `  S ) >. }  u.  {
<. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
3218, 19, 313eqtr4g 2340 . 2  |-  ( ( I  e.  _V  /\  R  e.  _V )  -> 
.xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) ) )
33 eqid 2283 . . . . . 6  |-  (/)  =  (/)
34 fn0 5363 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
3533, 34mpbir 200 . . . . 5  |-  (/)  Fn  (/)
36 reldmpsr 16109 . . . . . . . . . 10  |-  Rel  dom mPwSer
3736ovprc 5885 . . . . . . . . 9  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
381, 37syl5eq 2327 . . . . . . . 8  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  S  =  (/) )
3938fveq2d 5529 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( .s `  S
)  =  ( .s
`  (/) ) )
40 df-vsca 13225 . . . . . . . 8  |-  .s  = Slot  6
4140str0 13184 . . . . . . 7  |-  (/)  =  ( .s `  (/) )
4239, 19, 413eqtr4g 2340 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.xb  =  (/) )
4336, 1, 7elbasov 13192 . . . . . . . . . 10  |-  ( f  e.  B  ->  (
I  e.  _V  /\  R  e.  _V )
)
4443con3i 127 . . . . . . . . 9  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  -.  f  e.  B
)
4544eq0rdv 3489 . . . . . . . 8  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
4645xpeq2d 4713 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( K  X.  B
)  =  ( K  X.  (/) ) )
47 xp0 5098 . . . . . . 7  |-  ( K  X.  (/) )  =  (/)
4846, 47syl6eq 2331 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( K  X.  B
)  =  (/) )
4942, 48fneq12d 5337 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  (  .xb  Fn  ( K  X.  B )  <->  (/)  Fn  (/) ) )
5035, 49mpbiri 224 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.xb  Fn  ( K  X.  B ) )
51 fnov 5952 . . . 4  |-  (  .xb  Fn  ( K  X.  B
)  <->  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( x 
.xb  f ) ) )
5250, 51sylib 188 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.xb  =  ( x  e.  K ,  f  e.  B  |->  ( x 
.xb  f ) ) )
5344pm2.21d 98 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( f  e.  B  ->  ( ( D  X.  { x } )  o F  .x.  f
)  =  ( x 
.xb  f ) ) )
5453a1d 22 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( x  e.  K  ->  ( f  e.  B  ->  ( ( D  X.  { x } )  o F  .x.  f
)  =  ( x 
.xb  f ) ) ) )
55543imp 1145 . . . 4  |-  ( ( -.  ( I  e. 
_V  /\  R  e.  _V )  /\  x  e.  K  /\  f  e.  B )  ->  (
( D  X.  {
x } )  o F  .x.  f )  =  ( x  .xb  f ) )
5655mpt2eq3dva 5912 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) )  =  ( x  e.  K , 
f  e.  B  |->  ( x  .xb  f )
) )
5752, 56eqtr4d 2318 . 2  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F 
.x.  f ) ) )
5832, 57pm2.61i 156 1  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  o F  .x.  f
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    u. cun 3150   (/)c0 3455   {csn 3640   {ctp 3642   <.cop 3643    X. cxp 4687   `'ccnv 4688   "cima 4692    Fn wfn 5250   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    o Fcof 6076    ^m cmap 6772   Fincfn 6863   1c1 8738   NNcn 9746   6c6 9799   9c9 9802   NN0cn0 9965   ndxcnx 13145   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212  TopSetcts 13214   TopOpenctopn 13326   Xt_cpt 13343   mPwSer cmps 16087
This theorem is referenced by:  psrvsca  16136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-psr 16098
  Copyright terms: Public domain W3C validator