Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdif Structured version   Unicode version

Theorem pssdif 3692
 Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.)
Assertion
Ref Expression
pssdif

Proof of Theorem pssdif
StepHypRef Expression
1 df-pss 3338 . 2
2 pssdifn0 3691 . 2
31, 2sylbi 189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wne 2601   cdif 3319   wss 3322   wpss 3323  c0 3630 This theorem is referenced by:  pssnel  3695  pgpfac1lem5  15642  fundmpss  25395  dfon2lem6  25420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631
 Copyright terms: Public domain W3C validator