Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom1 Structured version   Unicode version

Theorem pssdifcom1 3715
 Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom1

Proof of Theorem pssdifcom1
StepHypRef Expression
1 difcom 3714 . . . 4
21a1i 11 . . 3
3 ssconb 3482 . . . . 5
43ancoms 441 . . . 4
54notbid 287 . . 3
62, 5anbi12d 693 . 2
7 dfpss3 3435 . 2
8 dfpss3 3435 . 2
96, 7, 83bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178   wa 360   cdif 3319   wss 3322   wpss 3323 This theorem is referenced by:  isfin2-2  8201  compssiso  8256 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338
 Copyright terms: Public domain W3C validator