Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom2 Structured version   Unicode version

Theorem pssdifcom2 3714
 Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom2

Proof of Theorem pssdifcom2
StepHypRef Expression
1 ssconb 3480 . . . 4
21ancoms 440 . . 3
3 difcom 3712 . . . . 5
43a1i 11 . . . 4
54notbid 286 . . 3
62, 5anbi12d 692 . 2
7 dfpss3 3433 . 2
8 dfpss3 3433 . 2
96, 7, 83bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359   cdif 3317   wss 3320   wpss 3321 This theorem is referenced by:  fin2i2  8198 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336
 Copyright terms: Public domain W3C validator